Angiogenesis

, Volume 20, Issue 3, pp 399–408

A novel strategy to enhance angiogenesis in vivo using the small VEGF-binding peptide PR1P

  • Avner Adini
  • Irit Adini
  • Zai-long Chi
  • Ratmir Derda
  • Amy E. Birsner
  • Benjamin D. Matthews
  • Robert J. D’Amato
Brief Communication

Abstract

Therapeutic angiogenesis is an experimental frontier in vascular biology that seeks to deliver angiogenic growth factors to ischemic or injured tissues to promote targeted formation of new blood vessels as an alternative approach to surgical revascularization procedures. Vascular endothelial growth factor (VEGF) is a potent angiogenic signal protein that is locally upregulated at sites of tissue injury. However, therapies aimed at increasing VEGF levels experimentally by injecting VEGF gene or protein failed to improve outcomes in human trials in part due to its short half-life and systemic toxicity. We recently designed a novel 12-amino acid peptide (PR1P) whose sequence was derived from an extracellular VEGF-binding domain of the pro-angiogenic glycoprotein prominin-1. In this study, we characterized the molecular binding properties of this novel potential therapeutic for targeted angiogenesis and provided the foundation for its use as an angiogenic molecule that can potentiate endogenous VEGF. We showed that PR1P bound VEGF directly and enhanced VEGF binding to endothelial cells and to VEGF receptors VEGFR2 and neuropilin-1. PR1P increased angiogenesis in the murine corneal micropocket assay when combined with VEGF, but had no activity without added VEGF. In addition, PR1P also enhanced angiogenesis in murine choroidal neovascularization and wound-healing models and augmented reperfusion in a murine hind-limb ischemia model. Together our data suggest that PR1P enhanced angiogenesis by potentiating the activity of endogenous VEGF. In so doing, this novel therapy takes advantage of endogenous VEGF gradients generated in injured tissues and may improve the efficacy of and avoid systemic toxicity seen with previous VEGF therapies.

Keywords

VEGF prominin-1 Angiogenesis Pro-angiogenesis therapy Peptide PR1P 

References

  1. 1.
    Nessa A, Latif SA, Siddiqui NI, Hussain MA, Bhuiyan MR, Hossain MA, Akther A, Rahman M (2009) Angiogenesis-a novel therapeutic approach for ischemic heart disease. Mymensingh Med J 18(2):264–272PubMedGoogle Scholar
  2. 2.
    Shibuya M (2014) VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul) 22(1):1–9. doi:10.4062/biomolther.2013.113 CrossRefGoogle Scholar
  3. 3.
    Shibuya M (2001) Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 26(1):25–35CrossRefPubMedGoogle Scholar
  4. 4.
    Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35 (discussion 35-16)PubMedGoogle Scholar
  5. 5.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669 CrossRefPubMedGoogle Scholar
  6. 6.
    Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149(1):293–305PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi:10.1210/er.2003-0027 CrossRefPubMedGoogle Scholar
  8. 8.
    Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102(8):898–901CrossRefPubMedGoogle Scholar
  9. 9.
    Karvinen H, Pasanen E, Rissanen TT, Korpisalo P, Vahakangas E, Jazwa A, Giacca M, Yla-Herttuala S (2011) Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 18(12):1166–1172. doi:10.1038/gt.2011.66 CrossRefPubMedGoogle Scholar
  10. 10.
    Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M, Sugimachi K, Sueishi K (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90(9):966–973CrossRefPubMedGoogle Scholar
  11. 11.
    Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, Schainfeld R, Isner JM (2000) Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 132(11):880–884CrossRefPubMedGoogle Scholar
  12. 12.
    Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER, Investigators V (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365CrossRefPubMedGoogle Scholar
  13. 13.
    Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, Sluiter WJ, Tio RA, Quax PH, Gans RO, Dullaart RP, Hospers GA (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691. doi:10.1089/hum.2006.17.683 CrossRefPubMedGoogle Scholar
  14. 14.
    Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19(6):622–629. doi:10.1038/gt.2012.17 CrossRefPubMedGoogle Scholar
  15. 15.
    Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D’Amato RJ (2013) The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 16(2):405–416. doi:10.1007/s10456-012-9323-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2(10):2545–2550. doi:10.1038/nprot.2007.368 CrossRefPubMedGoogle Scholar
  17. 17.
    Nakai K, Rogers MS, Baba T, Funakoshi T, Birsner AE, Luyindula DS, D’Amato RJ (2009) Genetic loci that control the size of laser-induced choroidal neovascularization. FASEB J Off Publ Fed Am Soc Exp Biol 23(7):2235–2243. doi:10.1096/fj.08-124321 Google Scholar
  18. 18.
    Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997. doi:10.1038/nature05249 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yi X, Ogata N, Komada M, Yamamoto C, Takahashi K, Omori K, Uyama M (1997) Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 235(5):313–319CrossRefPubMedGoogle Scholar
  20. 20.
    Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358CrossRefPubMedGoogle Scholar
  21. 21.
    Obadia JF, Tatou E, Lancon JP, Raoux MH, Brenot R, David M (1992) Post-traumatic aortic valve insufficiencies. Arch Mal Coeur Vaiss 85(2):211–214PubMedGoogle Scholar
  22. 22.
    Brandao D, Costa C, Canedo A, Vaz G, Pignatelli D (2011) Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int Angiol 30(1):25–34PubMedGoogle Scholar
  23. 23.
    Johnson KE, Wilgus TA (2014) Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 3(10):647–661. doi:10.1089/wound.2013.0517 CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lauer G, Sollberg S, Cole M, Flamme I, Sturzebecher J, Mann K, Krieg T, Eming SA (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 115(1):12–18. doi:10.1046/j.1523-1747.2000.00036.x CrossRefPubMedGoogle Scholar
  25. 25.
    Lauer G, Sollberg S, Cole M, Krieg T, Eming SA (2002) Generation of a novel proteolysis resistant vascular endothelial growth factor165 variant by a site-directed mutation at the plasmin sensitive cleavage site. FEBS Lett 531(2):309–313CrossRefPubMedGoogle Scholar
  26. 26.
    Mac Gabhann F, Qutub AA, Annex BH, Popel AS (2010) Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip Rev Syst Biol Med 2(6):694–707. doi:10.1002/wsbm.92 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shireman PK, Contreras-Shannon V, Reyes-Reyna SM, Robinson SC, McManus LM (2006) MCP-1 parallels inflammatory and regenerative responses in ischemic muscle. J Surg Res 134(1):145–157. doi:10.1016/j.jss.2005.12.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775–787CrossRefPubMedGoogle Scholar
  29. 29.
    Scholz D, Thomas S, Sass S, Podzuweit T (2003) Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. Mol Cell Biochem 246(1–2):57–67CrossRefPubMedGoogle Scholar
  30. 30.
    Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55CrossRefPubMedGoogle Scholar
  31. 31.
    Tang GL, Chang DS, Sarkar R, Wang R, Messina LM (2005) The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg 41(2):312–320. doi:10.1016/j.jvs.2004.11.012 CrossRefPubMedGoogle Scholar
  32. 32.
    Michaelides M, Gaillard MC, Escher P, Tiab L, Bedell M, Borruat FX, Barthelmes D, Carmona R, Zhang K, White E, McClements M, Robson AG, Holder GE, Bradshaw K, Hunt DM, Webster AR, Moore AT, Schorderet DF, Munier FL (2010) The PROM1 mutation p. R373C causes an autosomal dominant bull’s eye maculopathy associated with rod, rod-cone, and macular dystrophy. Invest Ophthalmol Vis Sci 51(9):4771–4780. doi:10.1167/iovs.09-4561 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, Klein M, Howes KA, Li Y, Kaminoh Y, Chen H, Zhao C, Chen Y, Al-Sheikh YT, Karan G, Corbeil D, Escher P, Kamaya S, Li C, Johnson S, Frederick JM, Zhao Y, Wang C, Cameron DJ, Huttner WB, Schorderet DF, Munier FL, Moore AT, Birch DG, Baehr W, Hunt DM, Williams DS, Zhang K (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118(8):2908–2916. doi:10.1172/JCI35891 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Avner Adini
    • 1
    • 3
  • Irit Adini
    • 1
  • Zai-long Chi
    • 1
  • Ratmir Derda
    • 2
  • Amy E. Birsner
    • 1
  • Benjamin D. Matthews
    • 1
    • 3
  • Robert J. D’Amato
    • 1
    • 4
  1. 1.Vascular Biology Program, Department of Surgery, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada
  3. 3.Department of Medicine, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  4. 4.Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations