Skip to main content

Advertisement

Log in

A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named “normalization”

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Antiangiogenics are widely used in cancer treatment in combination with chemotherapy and radiotherapy for their vascular effects. Antiangiogenics are supposed to induce morphological and functional changes in the chaotic tumor vasculature that would help enhance the therapeutic efficacy of chemotherapy and radiotherapy through the amelioration of the drug delivery or the oxygenation in the tumor, respectively. However, finding the best treatment sequence is not an easy task to achieve and no consensus has yet been established because of the lack of knowledge regarding when and for how long the vascular network is ameliorated. The aim of this work was to develop a dedicated image processing algorithm able to analyze the vascular structures on optical microscopy images of the vascular network and to follow its fine modifications in vivo, over time. We applied this algorithm to follow the evolution of the vascular parameters (vascularized tissue surface, branches, sprouts and length), in response or not to anti-VEGF therapy (10 mg/kg/day) and determine precisely whether there is really a vascular “normalization” with anti-VEGF therapy in comparison with the parameters extracted from healthy vascular networks. We found that for this determination, the choice of region of interest to analyze is critical as it is important to compare only microcirculation areas and avoid areas with arteriole–venule–capillary hierarchy. The algorithm analysis allowed us to define a vascular “normalization” in treated tumors, between 8 and 12 days of bevacizumab treatment that was confirmed by standard immunohistochemical analysis, microvascular permeability assessment and immunohistological blood perfusion assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kippenberger S, Meissner M, Kaufmann R, Hrgovic I, Zöller N, Kleemann J (2016) Tumor neoangiogenesis and flow congestion: a parallel to the Braess paradox? Circ Res 119:711–713. doi:10.1161/CIRCRESAHA.116.309411

    Article  CAS  PubMed  Google Scholar 

  3. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121. doi:10.1152/physrev.00038.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grepin R, Guyot M, Jacquin M, Durivault J, Chamorey E, Sudaka A, Serdjebi C, Lacarelle B, Scoazec J-Y, Negrier S, Simonnet H, Pages G (2012) Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines. Oncogene 31:1683–1694. doi:10.1038/onc.2011.360

    Article  CAS  PubMed  Google Scholar 

  5. Goel S, Wong AH-K, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harbor Perspect Med 2:a006486. doi:10.1101/cshperspect.a006486

    Article  Google Scholar 

  6. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. doi:10.1038/nm0901-987

    Article  CAS  PubMed  Google Scholar 

  7. Falk AT, Barrière J, François E, Follana P (2015) Bevacizumab: a dose review. Crit Rev Oncol Hematol 94:311–322. doi:10.1016/j.critrevonc.2015.01.012

    Article  PubMed  Google Scholar 

  8. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342. doi:10.1056/NEJMoa032691

    Article  CAS  PubMed  Google Scholar 

  9. McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, Duntsch C, Merchant TE, Davidoff AM (2010) Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol 76:1537–1545. doi:10.1016/j.ijrobp.2009.12.010

    Article  CAS  Google Scholar 

  10. Arjaans M, Oude Munnink TH, Oosting SF, Terwisscha van Scheltinga AGT, Gietema JA, Garbacik ET, Timmer-Bosscha H, Lub-de Hooge MN, Schroder CP, de Vries EGE (2013) Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res 73:3347–3355. doi:10.1158/0008-5472.CAN-12-3518

    Article  CAS  PubMed  Google Scholar 

  11. Dobosz M, Ntziachristos V, Scheuer W, Strobel S (2014) Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia NY N 16:1–13

    Article  Google Scholar 

  12. Goldwirt L, Beccaria K, Carpentier A, Idbaih A, Schmitt C, Levasseur C, Labussiere M, Milane A, Farinotti R, Fernandez C (2015) Preclinical impact of bevacizumab on brain and tumor distribution of irinotecan and temozolomide. J Neurooncol 122:273–281. doi:10.1007/s11060-015-1717-1

    Article  CAS  PubMed  Google Scholar 

  13. Carpentier G (2012) Documentation: angiogenesis analyzer. ImageJ. http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-ImageJ.html

  14. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. doi:10.1002/mrd.22489

    Article  CAS  PubMed  Google Scholar 

  15. Das S, Marsden PA (2013) Angiogenesis in glioblastoma. N Engl J Med 369:1561–1563. doi:10.1056/NEJMcibr1309402

    Article  CAS  PubMed  Google Scholar 

  16. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SAA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci 108:3749–3754. doi:10.1073/pnas.1014480108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tylcz J-B, El Alaoui-Lasmaili K, Djermoune E-H, Thomas N, Faivre B, Bastogne T (2015) Data-driven modeling and characterization of anti-angiogenic molecule effects on tumoral vascular density. Biomed Signal Process Control 20:52–60. doi:10.1016/j.bspc.2015.04.008

    Article  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  19. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. doi:10.1126/science.1260419

    Article  PubMed  Google Scholar 

  20. Fischer I, Cunliffe CH, Bollo RJ, Raza S, Monoky D, Chiriboga L, Parker EC, Golfinos JG, Kelly PJ, Knopp EA, Gruber ML, Zagzag D, Narayana A (2008) High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro-Oncology 10:700–708. doi:10.1215/15228517-2008-042

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, Barry WT, Goel S, Lahdenrata J, Isakoff SJ, Yeh ED, Jain SR, Golshan M, Brock J, Snuderl M, Winer EP, Krop IE, Jain RK (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci 112:14325–14330. doi:10.1073/pnas.1518808112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashina K, Tsubosaka Y, Kobayashi K, Omori K, Murata T (2015) VEGF-induced blood flow increase causes vascular hyper-permeability in vivo. Biochem Biophys Res Commun 464:590–595. doi:10.1016/j.bbrc.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  23. de Matos LL, Trufelli DC, de Matos MGL, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  24. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695. doi:10.1038/427695a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research funds of the French Ligue Nationale Contre le Cancer, “Opération réalisée avec le concours financier du conseil régional de Lorraine” and Université de Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Faivre.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Alaoui-Lasmaili, K., Djermoune, EH., Tylcz, JB. et al. A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named “normalization”. Angiogenesis 20, 149–162 (2017). https://doi.org/10.1007/s10456-016-9536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9536-3

Keywords

Navigation