, Volume 20, Issue 1, pp 175–181 | Cite as

Aliskiren decreases oxidative stress and angiogenic markers in retinal pigment epithelium cells

  • Sónia Simão
  • Daniela F. Santos
  • Gabriela A. Silva
Brief Communication


There is growing evidence on the role of ocular renin–angiotensin system (RAS) in the development of diabetic retinopathy (DR), particularly due to the trigger of oxidative stress and angiogenesis. Despite this there is no effective RAS-based therapy in DR capable of preventing retinal damage induced by RAS activation. We recently described that retinal pigment epithelium (RPE) cells express the main components of the RAS. We here propose to investigate the role of glucose upon the retinal RAS and whether aliskiren, a direct renin inhibitor, protects RPE cells from angiogenesis and oxidative stress. RPE cells were chosen as target since one of the first events in DR is the dysfunction of the RPE retinal layer, which as a key function in maintaining the integrity of the retina. We found that the RAS present in the RPE cells was deregulated by hyperglycemic glucose concentrations. Exposure of RPE cells to angiotensin II increased the levels of the main pro-angiogenic factor, vascular endothelial growth factor (VEGF) in a concentration-dependent manner. Additionally, angiotensin II also stimulated the production of reactive oxygen species in RPE cells. Treatment of RPE cells with aliskiren decreased the levels of oxidative stress and promoted the expression of anti-angiogenic factors such as the pigment epithelium-derived factor and the VEGF165b isoform. Our findings demonstrate that the RAS is deregulated in hyperglycemic conditions and that aliskiren successfully protected RPE cells from RAS over activation. These anti-angiogenic and antioxidant properties described for aliskiren over RPE cells suggest that this drug has potential to be used in the treatment of diabetic retinopathy.


Retinal pigment epithelium Aliskiren Renin–angiotensin system Angiogenesis Oxidative stress 



Angiotensin II-converting enzyme


Angiotensin II receptor blocker


Blood retinal barrier


Diabetic retinopathy


Direct renin inhibitor


Pigment epithelium-derived factor


Renin–angiotensin system


Reactive oxygen species


Retinal pigment epithelium


Vascular endothelial growth factor



This work was supported by the Portuguese Foundation for Science and Technology (FCT) with an individual grant to S Simão (SFRH/BPD/78404/2011), DF Santos (PD/BD/114251/2016) and GA Silva (EXPL-BIM-MEC-1433-2013), Research Center Grant UID/BIM/04773/2013 (CBMR), iNOVA4Health-UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement. Also acknowledged is PIRG05-GA-2009-249314–EyeSee (Grant to GA Silva).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li X, Cai Y, Wang YS, Shi YY, Hou W, Xu CS, Wang HY, Ye Z, Yao LB, Zhang J (2012) Hyperglycaemia exacerbates choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 signalling in RPE cells. PLoS ONE 7(10):e47600CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R (2013) Pathophysiology of diabetic retinopathy. ISRN Ophthalmol 2013:343560CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Simão S, Bitoque DB, Calado SM, Silva GA (2016) Oxidative stress modulates the expression of VEGF isoforms in the diabetic retina. New Frontiers Ophthalmol 2(1):77–83Google Scholar
  4. 4.
    Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL (2010) The renin–angiotensin system in retinal health and disease: its influence on neurons, glia and the vasculature. Prog Retin Eye Res 29(4):284–311CrossRefPubMedGoogle Scholar
  5. 5.
    Wilkinson-Berka JL, Rana I, Armani R, Agrotis A (2013) Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 124(10):597–615CrossRefGoogle Scholar
  6. 6.
    Weinberger D, Fink-Cohen S, Gaton DD, Priel E, Yassur Y (1995) Non-retinovascular leakage in diabetic maculopathy. Br J Ophthalmol 79(8):728–731CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45(2):675–684CrossRefPubMedGoogle Scholar
  8. 8.
    Simo R, Villarroel M, Corraliza L, Hernandez C, Garcia-Ramirez M (2010) The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010:190724CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Simao S, Santos DF, Silva GA (2016) Aliskiren inhibits the renin–angiotensin system in retinal pigment epithelium cells. Eur J Pharm Sci 92:22–27CrossRefPubMedGoogle Scholar
  10. 10.
    Marin Garcia PJ, Marin-Castano ME (2014) Angiotensin II-related hypertension and eye diseases. World J Cardiol 6(9):968–984CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vidotti DB, Casarini DE, Cristovam PC, Leite CA, Schor N, Boim MA (2004) High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol 286(6):F1039–F1045CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen G, Muller DN (2010) The biology of the (pro)renin receptor. J Am Soc Nephrol 21(1):18–23CrossRefPubMedGoogle Scholar
  13. 13.
    Fukuda K, Hirooka K, Mizote M, Nakamura T, Itano T, Shiraga F (2010) Neuroprotection against retinal ischemia-reperfusion injury by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci 51(7):3629–3638CrossRefPubMedGoogle Scholar
  14. 14.
    Kim JH, Yu YS, Cho CS, Kim KW (2009) Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab 29(3):621–628CrossRefPubMedGoogle Scholar
  15. 15.
    Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS (2005) Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol 25(1):65–70PubMedGoogle Scholar
  16. 16.
    Chen L, Kim SM, Eisner C, Oppermann M, Huang Y, Mizel D, Li L, Chen M, Sequeira Lopez ML, Weinstein LS, Gomez RA, Schnermann J, Briggs JP (2010) Stimulation of renin secretion by angiotensin II blockade is Gsalpha-dependent. J Am Soc Nephrol 21(6):986–992CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL, Wilkinson-Berka JL (2000) Retinal neovascularization is prevented by blockade of the renin–angiotensin system. Hypertension 36(6):1099–1104CrossRefPubMedGoogle Scholar
  18. 18.
    Milenkovic VM, Brockmann M, Meyer C, Desch M, Schweda F, Kurtz A, Todorov V, Strauss O (2010) Regulation of the renin expression in the retinal pigment epithelium by systemic stimuli. Am J Physiol Renal Physiol 299(2):F396–F403CrossRefPubMedGoogle Scholar
  19. 19.
    Wilkinson-Berka JL, Tan G, Binger KJ, Sutton L, McMaster K, Deliyanti D, Perera G, Campbell DJ, Miller AG (2011) Aliskiren reduces vascular pathology in diabetic retinopathy and oxygen-induced retinopathy in the transgenic (mRen-2)27 rat. Diabetologia 54(10):2724–2735CrossRefPubMedGoogle Scholar
  20. 20.
    Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2(1):71–98CrossRefPubMedGoogle Scholar
  21. 21.
    Ford KM, Saint-Geniez M, Walshe T, Zahr A, D’Amore PA (2011) Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci 52(13):9478–9487CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA 106(44):18751–18756CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konopatskaya O, Churchill AJ, Harper SJ, Bates DO, Gardiner TA (2006) VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Mol Vis 12:626–632PubMedGoogle Scholar
  24. 24.
    Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822–7835CrossRefPubMedGoogle Scholar
  25. 25.
    Wang B, Wang F, Zhang Y, Zhao SH, Zhao WJ, Yan SL, Wang YG (2015) Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 3(4):263–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sónia Simão
    • 1
    • 2
  • Daniela F. Santos
    • 3
  • Gabriela A. Silva
    • 2
  1. 1.Centre for Biomedical Research (CBMR)University of AlgarveFaroPortugal
  2. 2.CEDOC, NOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  3. 3.ProRegeM PhD Program, NOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations