Abstract
In the adult, new vessels and red blood cells form in response to hypoxia. Here, the oxygen-sensing system (PHD–HIF) has recently been put into focus, since the prolyl-hydroxylase domain proteins (PHD) and hypoxia-inducible factors (HIF) are considered as potential therapeutic targets to treat ischemia, cancers or age-related macula degeneration. While the oxygen-sensing system (PHD–HIF) has been studied intensively in this respect, only little is known from developing vertebrate embryos since mutations within this pathway led to an early decease of embryos due to placental defects. During vertebrate embryogenesis, a progenitor cell called hemangioblast is assumed to give rise to blood cells and blood vessels in a process called hematopoiesis and vasculogenesis, respectively. Xenopus provides an ideal experimental system to address these processes in vivo, as its development does not depend on a functional placenta and thus allows analyzing the role of oxygen directly. To this end, we adopted a computer-controlled four-channel system, which allowed us to culture Xenopus embryos under defined oxygen concentrations. Our data show that the development of vascular structures and blood cells is strongly impaired under hypoxia, while general development is less compromised. Interestingly, suppression of Phd2 function using specific antisense morpholinos or a chemical inhibitor resulted in mostly overlapping vascular defects; nevertheless, blood cell was formed almost normally. Our results provide the first evidence that oxygen via Phd2 has a decisive influence on the formation of the vascular network during vertebrate embryogenesis. These findings may be considered in certain potential treatment concepts.
This is a preview of subscription content, access via your institution.





References
Ny A, Autiero M, Carmeliet P (2006) Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis. Exp Cell Res 312(5):684–693. doi:10.1016/j.yexcr.2005.10.018
Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18(1):46–53. doi:10.1016/j.semcdb.2006.11.010
Coffin JD, Harrison J, Schwartz S, Heimark R (1991) Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol 148(1):51–62
Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91. doi:10.1146/annurev.cb.11.110195.000445
Klagsbrun M, Moses MA (1999) Molecular angiogenesis. Chem Biol 6(8):R217–R224. doi:10.1016/S1074-5521(99)80081-7
Ray PS, Estrada-Hernandez T, Sasaki H, Zhu L, Maulik N (2000) Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications for myocardial angiogenesis. Mol Cell Biochem 213(1–2):145–153
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54
Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 98(17):9630–9635. doi:10.1073/pnas.181341498
Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A (1999) Identification of the von Hippel–lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 96(22):12436–12441
Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107(1):1–3
Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, Fujii-Kuriyama Y (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun 248(3):789–794. doi:10.1006/bbrc.1998.9012
Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180. doi:10.1038/ng.2007.62
Wright G, Higgin JJ, Raines RT, Steenbergen C, Murphy E (2003) Activation of the prolyl hydroxylase oxygen-sensor results in induction of GLUT1, heme oxygenase-1, and nitric-oxide synthase proteins and confers protection from metabolic inhibition to cardiomyocytes. J Biol Chem 278(22):20235–20239. doi:10.1074/jbc.M301391200
Toescu EC (2004) Hypoxia response elements. Cell Calcium 36(3–4):181–185. doi:10.1016/j.ceca.2004.02.020
Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267. doi:10.1006/dbio.1999.9253
Ramirez-Bergeron DL, Runge A, Adelman DM, Gohil M, Simon MC (2006) HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell 11(1):81–92. doi:10.1016/j.devcel.2006.04.018
van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ, Giles RH, Schulte-Merker S (2010) von Hippel–Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Models Mech 3(5–6):343–353. doi:10.1242/dmm.004036
Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD, Linehan WM (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94(17):9102–9107
Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26(22):8336–8346. doi:10.1128/MCB.00425-06
Jiang H, Guo R, Powell-Coffman JA (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98(14):7916–7921. doi:10.1073/pnas.141234698
Anderson LL, Mao X, Scott BA, Crowder CM (2009) Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science 323(5914):630–633. doi:10.1126/science.1166175
Zhou D, Xue J, Lai JC, Schork NJ, White KP, Haddad GG (2008) Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. Plos Genet 4(10):e1000221. doi:10.1371/journal.pgen.1000221
Jaspers RT, Testerink J, Della Gaspera B, Chanoine C, Bagowski CP, van der Laarse WJ (2014) Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia. Biol Open 3(8):718–727. doi:10.1242/bio.20149167
Gracey AY, Lee TH, Higashi RM, Fan T (2011) Hypoxia-induced mobilization of stored triglycerides in the euryoxic goby Gillichthys mirabilis. J Exp Biol 214(Pt 18):3005–3012. doi:10.1242/jeb.059907
Rattner BA, Michael SD, Brinkley HJ (1978) Embryonic implantation, dietary intake, and plasma GH concentration in pregnant mice exposed to hypoxia. Aviat Space Environ Med 49(5):687–691
Golan H, Huleihel M (2006) The effect of prenatal hypoxia on brain development: short- and long-term consequences demonstrated in rodent models. Dev Sci 9(4):338–349. doi:10.1111/j.1467-7687.2006.00498.x
Wikenheiser J, Doughman YQ, Fisher SA, Watanabe M (2006) Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn 235(1):115–123. doi:10.1002/dvdy.20499
Hollemann T, Panitz F, Pieler T (1998) In situ hybridization: an improved whole-mount method for Xenopus embryos. In: Richter DJ (ed) A comparative methods approach to the study of oocytes and embryos. Oxford University Press, New York, pp 279–290
Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, Amsterdam
Saka Y, Smith JC (2001) Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev Biol 229(2):307–318. doi:10.1006/dbio.2000.0101
Hensey C, Gautier J (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mech Dev 69(1–2):183–195
Pfirrmann T, Lokapally A, Andreasson C, Ljungdahl P, Hollemann T (2013) SOMA: a single oligonucleotide mutagenesis and cloning approach. Plos One 8(6):e64870. doi:10.1371/journal.pone.0064870
Evans JP, Kay BK (1992) Biochemical fractionation of oocytes: freon extraction to remove yolk proteins from Oocyte Lysates. In: Kay KK, Peng HB (eds) Xenopus laevis: practical uses in cell and molecular biology. Methods in cell biology, vol 36. Academic Press, pp 133–147
McGrath KE, Palis J (2005) Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol 33(9):1021–1028. doi:10.1016/j.exphem.2005.06.012
Walmsley M, Cleaver D, Patient R (2008) Fibroblast growth factor controls the timing of Scl, Lmo2, and Runx1 expression during embryonic blood development. Blood 111(3):1157–1166. doi:10.1182/blood-2007-03-081323
Hartenstein V (1989) Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron 3(4):399–411
Kim SG, Buel GR, Blenis J (2013) Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 35(6):463–473. doi:10.1007/s10059-013-0138-2
Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904. doi:10.1101/gad.1256804
Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6 K activity upstream of TSC in Drosophila. Genes Dev 18(23):2879–2892. doi:10.1101/gad.322704
Dunwoodie SL (2009) The role of hypoxia in development of the Mammalian embryo. Dev Cell 17(6):755–773. doi:10.1016/j.devcel.2009.11.008
Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16(2):167–179. doi:10.1016/j.devcel.2009.01.003
Han D, Wen L, Chen Y (2012) Molecular cloning of phd1 and comparative analysis of phd1, 2, and 3 expression in Xenopus laevis. Sci World J 2012:689287. doi:10.1100/2012/689287
Neuhaus H, Muller F, Hollemann T (2010) Xenopus er71 is involved in vascular development. Dev Dyn 239(12):3436–3445. doi:10.1002/dvdy.22487
Salanga MC, Meadows SM, Myers CT, Krieg PA (2010) ETS family protein ETV2 is required for initiation of the endothelial lineage but not the hematopoietic lineage in the Xenopus embryo. Dev Dyn 239(4):1178–1187. doi:10.1002/dvdy.22277
Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402. doi:10.1016/j.molcel.2008.04.009
Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. doi:10.1016/j.molcel.2010.09.022
Huang ST, Vo KC, Lyell DJ, Faessen GH, Tulac S, Tibshirani R, Giaccia AJ, Giudice LC (2004) Developmental response to hypoxia. FASEB J 18(12):1348–1365. doi:10.1096/fj.03-1377com
Moore LG (2003) Fetal growth restriction and maternal oxygen transport during high altitude pregnancy. High Alt Med Biol 4(2):141–156. doi:10.1089/152702903322022767
Ream M, Ray AM, Chandra R, Chikaraishi DM (2008) Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol 295(2):R583–R595. doi:10.1152/ajpregu.00771.2007
Abbott BD, Buckalew AR (2000) Placental defects in ARNT-knockout conceptus correlate with localized decreases in VEGF-R2, Ang-1, and Tie-2. Dev Dyn 219(4):526–538. doi:10.1002/1097-0177(2000)9999:9999<:AID-DVDY1080>3.0.CO;2-N
Cowden Dahl KD, Fryer BH, Mack FA, Compernolle V, Maltepe E, Adelman DM, Carmeliet P, Simon MC (2005) Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. Mol Cell Biol 25(23):10479–10491. doi:10.1128/MCB.25.23.10479-10491.2005
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017
Acknowledgments
We thank M. Inui for the ami-SK plasmid, W. Knöchel for the beta-globin probe, Aldo Ciau-Uitz for the lmo2 plasmid, Paul Krieg for cardiac troponin and the NIBB for flk1 and flt1 probes. We like to thank Juliane Herfurth for her excellent technical help.
Funding
The work was supported by a grant from the “Roux-Forschungsförderprogramm” MLU Halle-Wittenberg [Grant Number FKZ 26/21].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Metikala, S., Neuhaus, H. & Hollemann, T. Suppression of vascular network formation by chronic hypoxia and prolyl-hydroxylase 2 (phd2) deficiency during vertebrate development. Angiogenesis 19, 119–131 (2016). https://doi.org/10.1007/s10456-015-9492-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10456-015-9492-3
Keywords
- Xenopus
- Angiogenesis
- Vasculogenesis
- Hypoxia
- Prolyl-hydroxylase domain
- phd2