Skip to main content

Advertisement

Log in

The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide. Recently, it has been found that about 40 % of patients with CRC have mutations in the K-RAS gene. Several clinical trials have showed that patients with metastatic colorectal cancer (mCRC) who present tumour-promoting mutations in signalling pathways involving the epidermal growth factor receptor (EGFR), which includes activating K-RAS mutations, do not respond to anti-EGFR drugs such as panitumumab and cetuximab. Hence, K-RAS status is now considered an important negative predictive factor for response to anti-EGFR drugs. Moreover, K-RAS status seems to have also a prognostic role in CRC, but this fact is somewhat controversial. Activity of antiangiogenic agents seems not to be influenced by K-RAS gene status. Tumour angiogenesis has attracted interest in attempts to improve the management of mCRC. The vascular endothelial growth factor (VEGF) pathway is fundamental to the regulation of angiogenesis, and research has focused on developing agents that selectively target it. In this way, the anti-VEGF antibody bevacizumab in combination with chemotherapy has provided important clinical benefits in terms of response rate, progression-free survival and overall survival to patients with mCRC. Efficacy data of bevacizumab in K-RAS wild-type patients seem to be comparable with the efficacy data observed with anti-EGFR therapies in a cross-trial comparison. Although there is a lack of prospective and randomized data in this setting, the combination of chemotherapy plus antiangiogenic agents could be considered as an effective alternative for the treatment of mCRC with independence of K-RAS gene status. Here, we review the available data we have in the literature of the use of antiangiogenic strategies in the treatment of mCRC nowadays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IARC (2008) The Globocan Project. http://globocan.iarc.fr/. Accessed 19 Apr 2012

  2. Garcia-Foncillas J (2012) Determina KRAS: a consolidated project. ASCO Meeting Abstr 30(4_suppl):428

    Google Scholar 

  3. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    Article  PubMed  Google Scholar 

  4. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  5. Andreyev HJ, Norman AR, Cunningham D et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85(5):692–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Andreyev HJ, Norman AR, Cunningham D et al (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst 90(9):675–684

    Article  PubMed  CAS  Google Scholar 

  7. Ince WL, Jubb AM, Holden SN et al (2005) Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst 97(13):981–989

    Article  PubMed  CAS  Google Scholar 

  8. Jubb AM, Hurwitz HI, Bai W et al (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24(2):217–227

    Article  PubMed  CAS  Google Scholar 

  9. Yu JL, Rak JW, Coomber BL et al (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295(5559):1526–1528

    Article  PubMed  CAS  Google Scholar 

  10. Sartore-Bianchi A, Bencardino K, Di Nicolantonio F et al (2010) Integrated molecular dissection of the epidermal growth factor receptor (EFGR) oncogenic pathway to predict response to EGFR-targeted monoclonal antibodies in metastatic colorectal cancer. Target Oncol 5(1):19–28

    Article  PubMed  Google Scholar 

  11. Rak J, Mitsuhashi Y, Bayko L et al (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55(20):4575–4580

    PubMed  CAS  Google Scholar 

  12. Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61(13):5090–5101

    PubMed  CAS  Google Scholar 

  13. Casanovas O, Hicklin DJ, Bergers G et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309

    Article  PubMed  CAS  Google Scholar 

  14. Dong J, Grunstein J, Tejada M et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23(14):2800–2810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Viloria-Petit A, Miquerol L, Yu JL et al (2003) Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO J 22(16):4091–4102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Normanno N, Tejpar S, Morgillo F et al (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6(9):519–527

    Article  PubMed  CAS  Google Scholar 

  17. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  PubMed  CAS  Google Scholar 

  18. Zachary I (2001) Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 280(6):C1375–C1386

    PubMed  CAS  Google Scholar 

  19. Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  PubMed  CAS  Google Scholar 

  20. Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49(3):568–581

    Article  PubMed  CAS  Google Scholar 

  21. Kabbinavar F, Hurwitz HI, Fehrenbacher L et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65

    Article  PubMed  CAS  Google Scholar 

  22. Kabbinavar FF, Schulz J, McCleod M et al (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23(16):3697–3705

    Article  PubMed  CAS  Google Scholar 

  23. Vincenzi B, Santini D, Russo A et al (2009) Bevacizumab in association with de Gramont 5-fluorouracil/folinic acid in patients with oxaliplatin-, irinotecan-, and cetuximab-refractory colorectal cancer: a single-center phase 2 trial. Cancer 115(20):4849–4856

    Article  PubMed  CAS  Google Scholar 

  24. Chen HX, Mooney M, Boron M et al (2006) Phase II multicenter trial of bevacizumab plus fluorouracil and leucovorin in patients with advanced refractory colorectal cancer: an NCI Treatment Referral Center Trial TRC-0301. J Clin Oncol 24(21):3354–3360

    Article  PubMed  CAS  Google Scholar 

  25. Tebbutt NC, Wilson K, Gebski VJ et al (2010) Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: results of the Australasian Gastrointestinal Trials Group Randomized Phase III MAX Study. J Clin Oncol 28(19):3191–3198

    Article  PubMed  CAS  Google Scholar 

  26. Feliu J, Safont MJ, Salud A et al (2010) Capecitabine and bevacizumab as first-line treatment in elderly patients with metastatic colorectal cancer. Br J Cancer 102(10):1468–1473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  PubMed  CAS  Google Scholar 

  28. Kabbinavar FF, Hambleton J, Mass RD et al (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23(16):3706–3712

    Article  PubMed  CAS  Google Scholar 

  29. Fuchs CS, Marshall J, Barrueco J (2008) Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: updated results from the BICC-C Study. J Clin Oncol 26(4):689–690

  30. Fuchs CS, Marshall J, Mitchell E et al (2007) Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J Clin Oncol 25(30):4779–4786

    Article  PubMed  CAS  Google Scholar 

  31. Sobrero A, Ackland S, Clarke S et al (2009) Phase IV study of bevacizumab in combination with infusional fluorouracil, leucovorin and irinotecan (FOLFIRI) in first-line metastatic colorectal cancer. Oncology 77(2):113–119

    Article  PubMed  CAS  Google Scholar 

  32. Ichante J, Adenis A, Malka D et al (2011) Impact of early tumor shrinkage on long-term outcome in metastatic colorectal cancer (mCRC) treated with 5FU plus irinotecan plus leucovorin (FOLFIRI) or capecitabine plus irinotecan XELIRI plus bevacizumab. ASCO Meeting Abstr 29(15_suppl):e14041

    Google Scholar 

  33. Saltz LB, Clarke S, Diaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019

    Article  PubMed  CAS  Google Scholar 

  34. Hochster HS, Hart LL, Ramanathan RK et al (2008) Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE study. J Clin Oncol 26(21):3523–3529

    Article  PubMed  CAS  Google Scholar 

  35. Giantonio BJ, Catalano PJ, Meropol NJ et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25(12):1539–1544

    Article  PubMed  CAS  Google Scholar 

  36. Reinacher-Schick AC, Kubicka S, Freier W et al (2008) Activity of the combination of bevacizumab (Bev) with capecitabine/irinotecan (CapIri/Bev) or capecitabine/oxaliplatin (CapOx/Bev) in advanced colorectal cancer (ACRC): a randomized phase II study of the AIO Colorectal Study Group (AIO trial 0604). ASCO Meeting Abstr 26(15_suppl):4030

    Google Scholar 

  37. Masi G, Loupakis F, Salvatore L et al (2010) Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol 11(9):845–852

    Article  PubMed  CAS  Google Scholar 

  38. Bennouna J, Sastre J, Arnold D et al (2013) Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 14(1):29–37

    Article  PubMed  CAS  Google Scholar 

  39. Bruera G, Santomaggio A, Cannita K et al (2010) “Poker” association of weekly alternating 5-fluorouracil, irinotecan, bevacizumab and oxaliplatin (FIr-B/FOx) in first line treatment of metastatic colorectal cancer: a phase II study. BMC Cancer 10:567

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tew WP, Gordon M, Murren J et al (2010) Phase 1 study of aflibercept administered subcutaneously to patients with advanced solid tumors. Clin Cancer Res 16(1):358–366

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki K, Yoshino T, Yamaguchi K et al (2011) Phase I dose escalation and pharmacokinetics study of intravenous aflibercept plus irinotecan, 5-fluorouracil, and folinic acid (FOLFIRI) in patients with metastatic colorectal cancer. ASCO Meeting Abstr 29(4_suppl):538

    Google Scholar 

  42. Tang P, Cohen SJ, Bjarnason GA et al (2008) Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): a PMH phase II consortium trial. ASCO Meeting Abstr 26(15_suppl):4027

    Google Scholar 

  43. Van Cutsem E, de Haas S, Kang Y-K et al (2012) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol 30(17):2119–2127

    Article  PubMed  Google Scholar 

  44. Tabernero J, Van Cutsem E, Lakomy R, et al (2011) Results from VELOUR, a phase 3 study of aflibercept (A) versus placebo [pbo) in combination with FOLFIRI for the treatment of patients (pt) with previously treated metastatic colorectal cancer (MCRC) [abstract no. The European Multidisciplinary Cancer Congress (EMCC)]

  45. Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312

    Article  PubMed  CAS  Google Scholar 

  46. Qvortrup C, Jensen BV, Jorgensen TL et al (2010) Addition of sunitinib to cetuximab and irinotecan in patients with heavily pre-treated advanced colorectal cancer. Acta Oncol 49(6):833–836

    Article  PubMed  CAS  Google Scholar 

  47. Saltz LB, Rosen LS, Marshall JL et al (2007) Phase II trial of sunitinib in patients with metastatic colorectal cancer after failure of standard therapy. J Clin Oncol 25(30):4793–4799

    Article  PubMed  CAS  Google Scholar 

  48. Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M et al (2013) Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J Clin Oncol 31(10):1341–1347

    Article  PubMed  CAS  Google Scholar 

  49. Hoff PM, Hochhaus A, Pestalozzi BC, et al (2010) Cediranib + FOLFOLX/XELOX versus placebo + FOLFOX/XELOX in patients (pts) with previously untreated metastatic colorectal cancer (mCRC): a randomized, double-blind, phase III study (Horizon II) (abstract no. ESMO Congress; October 2010)

  50. Schmoll H, Cunningham D, Sobrero A, et al (2010) mFOLFOX6 + cediranib vs mFOLFOX6 + bevacizumab in previously untreated metastatic colorectal cancer (MCRC): a randomized, double-blind, phase I//III study (HORIZON III) (abstract no. 35th ESMO Congress; 2010)

  51. Bendell JC, Tournigand C, Bednarczyk M et al (2011) Axitinib or bevacizumab (bev) plus FOLFOX or FOLFIRI as second-line therapy in patients (pts) with metastatic colorectal cancer (mCRC). ASCO Meeting Abstr 29(4_suppl):478

    Google Scholar 

  52. Infante JR, Cohn AL, Reid TR et al (2011) A randomized phase II study comparing mFOLFOX-6 combined with axitinib or bevacizumab or both in patients with metastatic colorectal cancer (mCRC). ASCO Meeting Abstr 29(4_suppl):485

    Google Scholar 

  53. Ychou M, Bouche O, Thezenas S et al (2011) Final results of a multicenter phase II trial assessing sorafenib (S) in combination with irinotecan (i) as second- or later-line treatment in metastatic colorectal cancer (mCRC) patients (pts) with KRAS-mutated tumors (mt; NEXIRI). ASCO Meeting Abstr 29(15_suppl):e14002

    Google Scholar 

  54. Tabernero J, Garcia-Carbonero R, Cassidy J, et al (2013) Sorafenib in combination with oxaliplatin, leucovorin, and fluorouracil (modified FOLFOX6) as first-line treatment of metastatic colorectal cancer: the RESPECT trial. Clin Cancer Res 19(9):1–10

  55. Grothey A, Lafky JM, Morlan BW et al (2010) Dual VEGF inhibition with sorafenib and bevacizumab (BEV) as salvage therapy in metastatic colorectal cancer (mCRC): results of the phase II North Central Cancer Treatment Group study N054C. ASCO Meeting Abstr 28(15_suppl):3549

    Google Scholar 

  56. Tebbutt NC, Kotasek D, Burris HA et al (2010) Motesanib with or without panitumumab (pmab) plus FOLFIRI or FOLFOX for the treatment of metastatic colorectal cancer (mCRC). ASCO Meeting Abstr 28(15_suppl):3538

    Google Scholar 

  57. Geitz H, Handt S, Zwingenberger K (1996) Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 31(2–3):213–221

    Article  PubMed  CAS  Google Scholar 

  58. Turk BE, Jiang H, Liu JO (1996) Binding of thalidomide to alpha1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production. Proc Natl Acad Sci USA 93(15):7552–7556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Dal Lago L, Richter MF, Cancela AI et al (2003) Phase II trial and pharmacokinetic study of thalidomide in patients with metastatic colorectal cancer. Invest New Drugs 21(3):359–366

    Article  PubMed  CAS  Google Scholar 

  60. Govindarajan R (2000) Irinotecan and thalidomide in metastatic colorectal cancer. Oncology 14(12 Suppl 13):29–32

    PubMed  CAS  Google Scholar 

  61. McCollum AD, Wu B, Clark JW et al (2006) The combination of capecitabine and thalidomide in previously treated, refractory metastatic colorectal cancer. Am J Clin Oncol 29(1):40–44

    Article  PubMed  CAS  Google Scholar 

  62. Zhang HG, Li J, Qin SK et al (2007) A randomized trial of irinotecan plus fluorouracil and leucovorin with thalidomide versus without thalidomide in the treatment for advanced colorectal cancer. Zhonghua Zhong Liu Za Zhi 29(3):228–231

    PubMed  CAS  Google Scholar 

  63. Diaz-Rubio E, Gomez-Espana A, Massuti B et al (2012) Role of Kras status in patients with metastatic colorectal cancer receiving first-line chemotherapy plus bevacizumab: a TTD group cooperative study. PLoS ONE 7(10):e47345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945–D950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Price TJ, Hardingham JE, Lee CK et al (2011) Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 29(19):2675–2682

    Article  PubMed  CAS  Google Scholar 

  66. Hurwitz HI, Yi J, Ince W et al (2009) The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 14(1):22–28

    Article  PubMed  CAS  Google Scholar 

  67. Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27(5):672–680

    Article  PubMed  CAS  Google Scholar 

  68. El-Khoueiry AB, Pohl A, Danenberg K et al (2009) Wt Kras and gene expression levels of VEGFR2, EGFR, and ERCC-1 associated with progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC) treated with first-line 5-FU or capecitabine with oxaliplatin and bevacizumab (FOLFOX/BV or XELOX/BV). ASCO Meeting Abstr 27(15S):4056

    Google Scholar 

  69. Suenaga M, Matsusaka S, Takagi K et al (2010) Potential markers predicting bevacizumab efficacy for metastatic colorectal cancer patients. ASCO Meeting Abstr 28(15_suppl):e14107

    Google Scholar 

  70. Stremitzer S, Maresch J, Aschacher T et al (2011) Influence of KRAS status of colorectal cancer liver metastases in patients receiving neoadjuvant chemotherapy including bevacizumab prior liver resection. ASCO Meeting Abstr 29(15_suppl):10620

    Google Scholar 

  71. Díaz-Rubio García E, Gómez A, Yuste A, et al (2011) Role of Kras status in patients with metastatic colorectal cancer receiving first line chemotherapy plus bevacizumab—a TTD spanish group cooperative study. In Stockholm, pp 391

  72. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360(6):563–572

    Article  PubMed  CAS  Google Scholar 

  73. Reinacher-Schick AC, Arnold D, Kubicka S, et al (2010) Impact of KRAS status on survival in patients (pts.) with metastatic colorectal cancer (mCRC) undergoing bevacizumab (bev) containing chemotherapy regimen—analysis of the AIO Colorectal Cancer Study Group. Ann Oncol Abstr 21(8_suppl):585

  74. Bruera G, Cannita K, Di Giacomo D et al (2011) Predictive and prognostic implications of KRAS genotype in patients with metastatic colorectal cancer (MCRC) treated with FIr-B/FOx association. ASCO Meeting Abstr 29(4_suppl):457

    Google Scholar 

  75. Bruera G, Cannita K, Lanfiuti Baldi P et al (2011) Effectiveness of FIr-B/FOx and liver metastasectomies in liver-only metastatic colorectal cancer (MCRC). ASCO Meeting Abstr 29(4_suppl):582

    Google Scholar 

  76. Van Cutsem E, Sobrero AF, Siena S, et al (2012) Phase III CORRECT trial of regorafenib in metastatic colorectal cancer (mCRC). ASCO Meeting Abstr 30(15_suppl):Abstract 3502

  77. Koutras AK, Antonacopoulou AG, Eleftheraki AG, et al (2011) Vascular endothelial growth factor polymorphisms and clinical outcome in colorectal cancer patients treated with irinotecan-based chemotherapy and bevacizumab. Pharmacogenomics J 12:468–475

  78. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26(28):4672–4678

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Bernaards C, Hegde P, Chen D et al (2010) Circulating vascular endothelial growth factor (VEGF) as a biomarker for bevacizumab-based therapy in metastatic colorectal, non-small cell lung, and renal cell cancers: analysis of phase III studies. ASCO Meeting Abstr 28(15_suppl):10519

    Google Scholar 

  80. Pan Q, Chanthery Y, Liang WC et al (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11(1):53–67

    Article  PubMed  CAS  Google Scholar 

  81. Shojaei F, Singh M, Thompson JD et al (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA 105(7):2640–2645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34

    Article  PubMed  CAS  Google Scholar 

  83. Carrillo-de Santa Pau E, Carrillo Arias F, Caso Pelaez E et al (2010) Vascular endothelial growth factor (VEGF) serum levels are associated with survival in early stages of lung cancer patients. Cancer Invest 28(4):393–398

    Article  PubMed  CAS  Google Scholar 

  84. de Groot JF, Piao Y, Tran H et al (2011) Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept. Clin Cancer Res 17(14):4872–4881

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kopetz S, Hoff PM, Morris JS et al (2010) Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 28(3):453–459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302(21):2338–2344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Grothey A, Hedrick EE, Mass RD et al (2008) Response-independent survival benefit in metastatic colorectal cancer: a comparative analysis of N9741 and AVF2107. J Clin Oncol 26(2):183–189

    Article  PubMed  CAS  Google Scholar 

  88. Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11(12):1172–1183

    Article  PubMed  CAS  Google Scholar 

  89. Gerstner ER, Sorensen AG, Jain RK et al (2008) Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol 21(6):728–735

    Article  PubMed  Google Scholar 

  90. Jain RK, Duda DG, Willett CG et al (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. O’Connor JP, Jackson A, Parker GJ et al (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9(3):167–177

    Article  PubMed  Google Scholar 

  92. Wilson PM, LaBonte MJ, Lenz HJ (2013) Assessing the in vivo efficacy of biologic antiangiogenic therapies. Cancer Chemother Pharmacol 71(1):1–12

    Article  PubMed  CAS  Google Scholar 

  93. Dahlberg SE, Sandler AB, Brahmer JR et al (2010) Clinical course of advanced non-small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J Clin Oncol 28(6):949–954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Diaz-Rubio E, Gomez-Espana A, Massuti B et al (2012) First-line XELOX plus bevacizumab followed by XELOX plus bevacizumab or single-agent bevacizumab as maintenance therapy in patients with metastatic colorectal cancer: the phase III MACRO TTD study. Oncologist 17(1):15–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Díaz-Rubio García E, Gómez A, Yuste A, et al (2011) Role of Kras status in patients with metastic colorectal cancer receiving first line chemotherapy plus bevacizumab—a TTD spanish group cooperative study [abstract no. 16th European Cancer Organization (ECCO) Congress]

Download references

Acknowledgments

The authors wish to thank Ana Martín from HealthCo SL (Madrid, Spain) for her help in preparing the first draft of this manuscript. The necessary scientific meetings were supported financially by Roche Farma, S.A. of Spain. We also thank Simone Boniface of in Science Communications, Springer Healthcare, who provided post-submission medical writing support. This support was funded by Roche. Roche Farma, S.A. of Spain, was given the opportunity to comment on the first draft of the manuscript, but all the decisions about its content were taken by the authors based on editorial merit. All authors have approved the final version of the submitted manuscript.

Conflict of interest

The authors declare that they do not have any conflict of interest that may inappropriately influence this work. Dr. EG received unrestricted grants for research from GSK, Novartis, Pfizer, and Bayer and honoraria for lectures and advisory boards from Amgen, Merck and Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar García-Alfonso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Alfonso, P., Grande, E., Polo, E. et al. The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status. Angiogenesis 17, 805–821 (2014). https://doi.org/10.1007/s10456-014-9433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9433-6

Keywords

Navigation