Skip to main content
Log in

The inflammatory response of lymphatic endothelium

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193(4):607–618. doi:10.1083/jcb.201012094

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380. doi:10.1038/nm.2545

    PubMed  CAS  Google Scholar 

  3. Forster R, Braun A, Worbs T (2012) Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol 33(6):271–280. doi:10.1016/j.it.2012.02.007

    PubMed  Google Scholar 

  4. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362. doi:10.1084/jem.20062596

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206(13):2925–2935. doi:10.1084/jem.20091739

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Detmar M, Brown LF, Claffey KP, Yeo KT, Kocher O, Jackman RW, Berse B, Dvorak HF (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180(3):1141–1146

    PubMed  CAS  Google Scholar 

  7. Wauke K, Nagashima M, Ishiwata T, Asano G, Yoshino S (2002) Expression and localization of vascular endothelial growth factor-C in rheumatoid arthritis synovial tissue. J Rheumatol 29(1):34–38

    PubMed  CAS  Google Scholar 

  8. Pedica F, Ligorio C, Tonelli P, Bartolini S, Baccarini P (2008) Lymphangiogenesis in Crohn’s disease: an immunohistochemical study using monoclonal antibody D2-40. Virchows Arch 452(1):57–63. doi:10.1007/s00428-007-0540-2

    PubMed  CAS  Google Scholar 

  9. Nakano T, Nakashima Y, Yonemitsu Y, Sumiyoshi S, Chen YX, Akishima Y, Ishii T, Iida M, Sueishi K (2005) Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol 36(4):330–340. doi:10.1016/j.humpath.2005.01.001

    PubMed  CAS  Google Scholar 

  10. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115(2):247–257. doi:10.1172/JCI22037

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12(2):230–234. doi:10.1038/nm1340

    PubMed  CAS  Google Scholar 

  12. Dashkevich A, Heilmann C, Kayser G, Germann M, Beyersdorf F, Passlick B, Geissler HJ (2010) Lymph angiogenesis after lung transplantation and relation to acute organ rejection in humans. Ann Thorac Surg 90(2):406–411. doi:10.1016/j.athoracsur.2010.03.013

    PubMed  Google Scholar 

  13. Tabibiazar R, Cheung L, Han J, Swanson J, Beilhack A, An A, Dadras SS, Rockson N, Joshi S, Wagner R, Rockson SG (2006) Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 3(7):e254. doi:10.1371/journal.pmed.0030254

    PubMed Central  PubMed  Google Scholar 

  14. Guo R, Zhou Q, Proulx ST, Wood R, Ji RC, Ritchlin CT, Pytowski B, Zhu Z, Wang YJ, Schwarz EM, Xing L (2009) Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum 60(9):2666–2676. doi:10.1002/art.24764

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678. doi:10.1182/blood-2010-10-316356

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, Dana MR (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10(8):813–815. doi:10.1038/nm1078

    PubMed  CAS  Google Scholar 

  17. Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L, Cursiefen C (2010) Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol 184(2):535–539. doi:10.4049/jimmunol.0903180

    PubMed  CAS  Google Scholar 

  18. Nykanen AI, Sandelin H, Krebs R, Keranen MA, Tuuminen R, Karpanen T, Wu Y, Pytowski B, Koskinen PK, Yla-Herttuala S, Alitalo K, Lemstrom KB (2010) Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121(12):1413–1422. doi:10.1161/CIRCULATIONAHA.109.910703

    PubMed  Google Scholar 

  19. Yin N, Zhang N, Xu J, Shi Q, Ding Y, Bromberg JS (2011) Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92(1):25–30. doi:10.1097/TP.0b013e31821d2661

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Thomas SN, Rutkowski JM, Pasquier M, Kuan EL, Alitalo K, Randolph GJ, Swartz MA (2012) Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J Immunol 189(5):2181–2190. doi:10.4049/jimmunol.1103545

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS, Engelhard VH (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207(4):681–688

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR, Bender TP, Tung KS, Vella AT, Adler AJ, Chen L, Engelhard VH (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120(24):4772–4782. doi:10.1182/blood-2012-04-427013

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Fletcher AL, Malhotra D, Turley SJ (2011) Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 32(1):12–18. doi:10.1016/j.it.2010.11.002

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH (2012) Lymphatic endothelial cells—key players in regulation of tolerance and immunity. Front Immunol 3:305. doi:10.3389/fimmu.2012.00305

    PubMed Central  PubMed  Google Scholar 

  25. Halin C, Detmar M (2008) Chapter 1. Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol 445:1–25. doi:10.1016/S0076-6879(08)03001-2

    PubMed  CAS  Google Scholar 

  26. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050. doi:10.1172/JCI20465

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, Han SH, Alitalo K, Koh GY (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113(22):5650–5659. doi:10.1182/blood-2008-09-176776

    PubMed  CAS  Google Scholar 

  28. Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175(4):1733–1745. doi:10.2353/ajpath.2009.090133

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372. doi:10.1172/JCI23874

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hubner W, Chen BK, Genden E, Skobe M, Lira SA (2007) Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA 104(12):5026–5031. doi:10.1073/pnas.0606697104

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, Jain RK, McDonald DM, Ruddle NH (2010) Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116(12):2173–2182. doi:10.1182/blood-2009-12-256065

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Chauhan SK, Jin Y, Goyal S, Lee HS, Fuchsluger TA, Lee HK, Dana R (2011) A novel pro-lymphangiogenic function for Th17/IL-17. Blood 118(17):4630–4634. doi:10.1182/blood-2011-01-332049

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Choi I, Lee YS, Chung HK, Choi D, Ecoiffier T, Lee HN, Kim KE, Lee S, Park EK, Maeng YS, Kim NY, Ladner RD, Petasis NA, Koh CJ, Chen L, Lenz HJ, Hong YK (2013) Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16(1):29–44. doi:10.1007/s10456-012-9297-6

    PubMed  CAS  Google Scholar 

  34. Shao X, Liu C (2006) Influence of IFN-alpha and IFN-gamma on lymphangiogenesis. J Interferon Cytokine Res 26(8):568–574. doi:10.1089/jir.2006.26.568

    PubMed  CAS  Google Scholar 

  35. Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS (2010) Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 8(3):155–164. doi:10.1089/lrb.2010.0004

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Kataru RP, Kim H, Jang C, Choi DK, Koh BI, Kim M, Gollamudi S, Kim YK, Lee SH, Koh GY (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34(1):96–107. doi:10.1016/j.immuni.2010.12.016

    PubMed  CAS  Google Scholar 

  37. Oka M, Iwata C, Suzuki HI, Kiyono K, Morishita Y, Watabe T, Komuro A, Kano MR, Miyazono K (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111(9):4571–4579. doi:10.1182/blood-2007-10-120337

    PubMed  CAS  Google Scholar 

  38. Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ (2010) Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am J Pathol 177(6):3202–3214. doi:10.2353/ajpath.2010.100594

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203(12):2763–2777. doi:10.1084/jem.20051759

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Vigl B, Aebischer D, Nitschke M, Iolyeva M, Rothlin T, Antsiferova O, Halin C (2011) Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118(1):205–215. doi:10.1182/blood-2010-12-326447

    PubMed  CAS  Google Scholar 

  41. Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180(5):3399–3405

    PubMed  CAS  Google Scholar 

  42. Martln-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198(4):615–621

    Google Scholar 

  43. Brown MN, Fintushel SR, Lee MH, Jennrich S, Geherin SA, Hay JB, Butcher EC, Debes GF (2010) Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J Immunol 185(8):4873–4882. doi:10.4049/jimmunol.1000676

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Sawa Y, Tsuruga E (2008) The expression of E-selectin and chemokines in the cultured human lymphatic endothelium with lipopolysaccharides. J Anat 212(5):654–663. doi:10.1111/j.1469-7580.2008.00892.x

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y, Williams ED, Rescigno M, Cavallaro U (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206(3):623–635. doi:10.1084/jem.20081211

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, Halin C (2013) Novel role for ALCAM in lymphatic network formation and function. FASEB J 27:978–990. doi:10.1096/fj.12-217844

    PubMed  CAS  Google Scholar 

  47. Vigl B, Zgraggen C, Rehman N, Banziger-Tobler NE, Detmar M, Halin C (2009) Coxsackie-and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro. Exp Cell Res 315(2):336–347. doi:10.1016/j.yexcr.2008.10.020

    PubMed  CAS  Google Scholar 

  48. Teijeira A, Garasa S, Pelaez R, Azpilikueta A, Ochoa C, Marre D, Rodrigues M, Alfaro C, Auba C, Valitutti S, Melero I, Rouzaut A (2013) Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels. J Investig Dermatol. doi:10.1038/jid.2013.152

    PubMed  Google Scholar 

  49. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, Luche H, Fehling HJ, Biehlmaier O, Lyck R, Halin C (2012) Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120(11):2249–2258. doi:10.1182/blood-2012-03-417923

    PubMed  CAS  Google Scholar 

  50. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55. doi:10.1038/nature06887

    PubMed  Google Scholar 

  51. Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ, Skobe M (2009) Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J Immunol 183(3):1767–1779. doi:10.4049/jimmunol.0802167

    PubMed  CAS  Google Scholar 

  52. Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-C and CC chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357. doi:10.1158/0008-5472.CAN-08-1875

    PubMed  CAS  Google Scholar 

  53. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931. doi:10.1161/CIRCRESAHA.109.207274

    PubMed  CAS  Google Scholar 

  54. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339(6117):328–332. doi:10.1126/science.1228456

    PubMed  CAS  Google Scholar 

  55. Johnson LA, Jackson DG (2010) Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 22(10):839–849. doi:10.1093/intimm/dxq435

    PubMed  CAS  Google Scholar 

  56. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML, Magistrelli G, Masternak K, Chevailler A, Delneste Y, Jeannin P (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117(4):1196–1204. doi:10.1182/blood-2009-11-254490

    PubMed  CAS  Google Scholar 

  57. Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, Sakabe J, Yoshiki R, Tamamura H, Fujii N, Inaba K, Tokura Y (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257. doi:10.2353/ajpath.2007.070225

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Johnson LA, Jackson DG (2013) The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J Cell Sci. doi:10.1242/jcs.135343

    PubMed Central  Google Scholar 

  59. Zhuo W, Jia L, Song N, Lu XA, Ding Y, Wang X, Song X, Fu Y, Luo Y (2012) The CXCL12–CXCR4 chemokine pathway: a novel axis regulates lymphangiogenesis. Clin Cancer Res 18(19):5387–5398. doi:10.1158/1078-0432.CCR-12-0708

    PubMed  CAS  Google Scholar 

  60. Nielsen SR, Hammer T, Gibsona J, Pepperb MS, Nisatoc RE, Dissinga S, Tritsarisa K (2013) IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression. Microcirculation. doi:10.1111/micc.12055

    PubMed  Google Scholar 

  61. Kang S, Lee SP, Kim KE, Kim HZ, Memet S, Koh GY (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113(11):2605–2613. doi:10.1182/blood-2008-07-166934

    PubMed  CAS  Google Scholar 

  62. Garrafa E, Imberti L, Tiberio G, Prandini A, Giulini SM, Caimi L (2011) Heterogeneous expression of toll-like receptors in lymphatic endothelial cells derived from different tissues. Immunol Cell Biol 89(3):475–481. doi:10.1038/icb.2010.111

    PubMed  CAS  Google Scholar 

  63. Johnson LA, Prevo R, Clasper S, Jackson DG (2007) Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 282(46):33671–33680. doi:10.1093/intimm/dxq435

    PubMed  CAS  Google Scholar 

  64. Hou WH, Liu IH, Tsai CC, Johnson FE, Huang SS, Huang JS (2011) CRSBP-1/LYVE-1 ligands disrupt lymphatic intercellular adhesion by inducing tyrosine phosphorylation and internalization of VE-cadherin. J Cell Sci 124(Pt 8):1231–1244. doi:10.1242/jcs.078154

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Platonova N, Miquel G, Regenfuss B, Taouji S, Cursiefen C, Chevet E, Bikfalvi A (2013) Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121(7):1229–1237. doi:10.1182/blood-2012-08-450502

    PubMed  CAS  Google Scholar 

  66. Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, Pepper MS, Zawieja DC, Ran S (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115(2):418–429. doi:10.1182/blood-2008-12-196840

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, Lin C, Fiebiger E, Wei X, Wu Y, Hicklin D, Bohlen P, Detmar M (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–1057. doi:10.1182/blood-2003-08-2964

    PubMed  CAS  Google Scholar 

  68. Halin C, Tobler NE, Vigl B, Brown LF, Detmar M (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110(9):3158–3167. doi:10.1182/blood-2007-01-066811

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215. doi:10.1016/j.immuni.2006.01.003

    PubMed  CAS  Google Scholar 

  70. Tan KW, Yeo KP, Wong FH, Lim HY, Khoo KL, Abastado JP, Angeli V (2012) Expansion of cortical and medullary sinuses restrains lymph node hypertrophy during prolonged inflammation. J Immunol 188(8):4065–4080. doi:10.4049/jimmunol.1101854

    PubMed  CAS  Google Scholar 

  71. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196(11):1497–1506

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Wirzenius M, Tammela T, Uutela M, He Y, Odorisio T, Zambruno G, Nagy JA, Dvorak HF, Yla-Herttuala S, Shibuya M, Alitalo K (2007) Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 204(6):1431–1440. doi:10.1084/jem.20062642

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla-Herttuala S, Alitalo K (2001) Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 88(6):623–629

    PubMed  CAS  Google Scholar 

  74. Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM (2012) Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am J Pathol 180(6):2561–2575. doi:10.1016/j.ajpath.2012.02.019

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Zampell JC, Avraham T, Yoder N, Fort N, Yan A, Weitman ES, Mehrara BJ (2012) Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines. Am J Physiol Cell Physiol 302(2):C392–C404. doi:10.1152/ajpcell.00306.2011

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ (2012) CD4(+) cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS One 7(11):e49940. doi:10.1371/journal.pone.0049940

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Tomura M, Honda T, Tanizaki H, Otsuka A, Egawa G, Tokura Y, Waldmann H, Hori S, Cyster JG, Watanabe T, Miyachi Y, Kanagawa O, Kabashima K (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest 120(3):883–893. doi:10.1172/JCI40926

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157(6):2577–2585

    PubMed  CAS  Google Scholar 

  79. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361. doi:10.1038/nri2294

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Gautier EL, Ivanov S, Lesnik P, Randolph GJ (2013) Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood. doi:10.1182/blood-2013-01-478206

    PubMed  Google Scholar 

  81. Cliff S, Bedlow AJ, Stanton AW, Mortimer PS (1999) An in vivo study of the microlymphatics in psoriasis using fluorescence microlymphography. Br J Dermatol 140(1):61–66

    PubMed  CAS  Google Scholar 

  82. Ryan TJ (1980) Microcirculation in psoriasis: blood vessels, lymphatics and tissue fluid. Pharmacol Ther 10(1):27–64

    PubMed  CAS  Google Scholar 

  83. Kovi J, Duong HD, Hoang CT (1981) Ultrastructure of intestinal lymphatics in Crohn’s disease. Am J Clin Pathol 76(4):385–394

    PubMed  CAS  Google Scholar 

  84. Van Kruiningen HJ, Colombel JF (2008) The forgotten role of lymphangitis in Crohn’s disease. Gut 57(1):1–4. doi:10.1136/gut.2007.123166

    PubMed  Google Scholar 

  85. Liao S, Ruddle NH (2006) Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol 177(5):3369–3379

    PubMed  CAS  Google Scholar 

  86. Lachance PA, Hazen A, Sevick-Muraca EM (2013) Lymphatic vascular response to acute inflammation. PLoS One 8(9):e76078. doi:10.1371/journal.pone.0076078

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169(4):1496–1503. doi:10.2353/ajpath.2006.060197

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Shi VY, Bao L, Chan LS (2012) Inflammation-driven dermal lymphangiogenesis in atopic dermatitis is associated with CD11b+ macrophage recruitment and VEGF-C up-regulation in the IL-4-transgenic mouse model. Microcirculation 19(7):567–579. doi:10.1111/j.1549-8719.2012.00189.x

    PubMed  CAS  Google Scholar 

  89. Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M (2010) Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 207(10):2255–2269. doi:10.1084/jem.20100559

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Kajiya K, Sawane M, Huggenberger R, Detmar M (2009) Activation of the VEGFR-3 pathway by VEGF-C attenuates UVB-induced edema formation and skin inflammation by promoting lymphangiogenesis. J Invest Dermatol 129(5):1292–1298. doi:10.1038/jid.2008.351

    PubMed  CAS  Google Scholar 

  91. Zhou Q, Guo R, Wood R, Boyce BF, Liang Q, Wang YJ, Schwarz EM, Xing L (2011) Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum 63(8):2318–2328. doi:10.1002/art.30421

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Kajiya K, Huggenberger R, Drinnenberg I, Ma B, Detmar M (2008) Nitric oxide mediates lymphatic vessel activation via soluble guanylate cyclase alpha1beta1-impact on inflammation. FASEB J 22(2):530–537. doi:10.1096/fj.07-8873com

    PubMed  CAS  Google Scholar 

  93. Breslin JW, Yuan SY, Wu MH (2007) VEGF-C alters barrier function of cultured lymphatic endothelial cells through a VEGFR-3-dependent mechanism. Lymphat Res Biol 5(2):105–113. doi:10.1089/lrb.2007.1004

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Breslin JW (2011) ROCK and cAMP promote lymphatic endothelial cell barrier integrity and modulate histamine and thrombin-induced barrier dysfunction. Lymphat Res Biol 9(1):3–11. doi:10.1089/lrb.2010.0016

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Rehal S, Blanckaert P, Roizes S, von der Weid PY (2009) Characterization of biosynthesis and modes of action of prostaglandin E2 and prostacyclin in guinea pig mesenteric lymphatic vessels. Br J Pharmacol 158(8):1961–1970. doi:10.1111/j.1476-5381.2009.00493.x

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Plaku KJ, von der Weid PY (2006) Mast cell degranulation alters lymphatic contractile activity through action of histamine. Microcirculation 13(3):219–227. doi:10.1080/10739680600556902

    PubMed  CAS  Google Scholar 

  97. Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS, Munn LL, Ruddle NH, Jain RK, Fukumura D, Padera TP (2011) Impaired lymphatic contraction associated with immunosuppression. Proc Natl Acad Sci USA 108(46):18784–18789. doi:10.1073/pnas.1116152108

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH (2007) Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol 293(1):H709–H718. doi:10.1152/ajpheart.00102.2007

    PubMed  CAS  Google Scholar 

  99. McKimmie CS, Singh MD, Hewit K, Lopez-Franco O, Le Brocq M, Rose-John S, Lee KM, Baker AH, Wheat R, Blackbourn DJ, Nibbs RJ, Graham GJ (2013) An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood. doi:10.1182/blood-2012-04-425314

    PubMed  Google Scholar 

  100. Lee KM, McKimmie CS, Gilchrist DS, Pallas KJ, Nibbs RJ, Garside P, McDonald V, Jenkins C, Ransohoff R, Liu L, Milling S, Cerovic V, Graham GJ (2011) D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood 118(23):6220–6229. doi:10.1182/blood-2011-03-344044

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Jamieson T, Cook DN, Nibbs RJ, Rot A, Nixon C, McLean P, Alcami A, Lira SA, Wiekowski M, Graham GJ (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6(4):403–411. doi:10.1038/ni1182

    PubMed  CAS  Google Scholar 

  102. Neusser MA, Kraus AK, Regele H, Cohen CD, Fehr T, Kerjaschki D, Wuthrich RP, Penfold ME, Schall T, Segerer S (2010) The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney Int 77(9):801–808. doi:10.1038/ki.2010.6

    PubMed  CAS  Google Scholar 

  103. Ohtani O, Ohtani Y (2008) Organization and developmental aspects of lymphatic vessels. Arch Histol Cytol 71(1):1–22

    PubMed  Google Scholar 

  104. Norrmen C, Vandevelde W, Ny A, Saharinen P, Gentile M, Haraldsen G, Puolakkainen P, Lukanidin E, Dewerchin M, Alitalo K, Petrova TV (2010) Liprin (beta)1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity. Blood 115(4):906–909. doi:10.1182/blood-2009-03-212274

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Halin C, Fahrngruber H, Meingassner JG, Bold G, Littlewood-Evans A, Stuetz A, Detmar M (2008) Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am J Pathol 173(1):265–277. doi:10.2353/ajpath.2008.071074

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Muniz LR, Pacer ME, Lira SA, Furtado GC (2011) A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures. J Immunol 187(2):828–834. doi:10.4049/jimmunol.1004233

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Mu H, Calderone TL, Davies MA, Prieto VG, Wang H, Mills GB, Bar-Eli M, Gershenwald JE (2012) Lysophosphatidic acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. Am J Pathol 180(5):2170–2181. doi:10.1016/j.ajpath.2012.03.003

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, Nishikawa T, Tamai K, Azuma N, Sasajima T, Kaneda Y (2006) Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114(11):1177–1184. doi:10.1161/CIRCULATIONAHA.105.602953

    PubMed  CAS  Google Scholar 

  109. Yoon CM, Hong BS, Moon HG, Lim S, Suh PG, Kim YK, Chae CB, Gho YS (2008) Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood 112(4):1129–1138. doi:10.1182/blood-2007-11-125203

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Yin N, Zhang N, Lal G, Xu J, Yan M, Ding Y, Bromberg JS (2011) Lymphangiogenesis is required for pancreatic islet inflammation and diabetes. PLoS One 6(11):e28023. doi:10.1371/journal.pone.0028023

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CH gratefully acknowledges financial support from the Swiss National Science Foundation (Grant 310030_138330).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Halin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aebischer, D., Iolyeva, M. & Halin, C. The inflammatory response of lymphatic endothelium. Angiogenesis 17, 383–393 (2014). https://doi.org/10.1007/s10456-013-9404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9404-3

Keywords

Navigation