Skip to main content

Advertisement

Log in

Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34+ cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34−TRAIL+ cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34−TRAIL+ cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34−TRAIL+ cells. In fact, CD34−TRAIL+ cells combined with perifosine, but not CD34−TRAIL+ cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34−TRAIL+ cells failed to affect the growth of SU-DHL-4V tumors, but CD34−TRAIL+ cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi:10.1038/sj.onc.1209085

    Article  PubMed  CAS  Google Scholar 

  2. Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S, Ning J, He L, Yang H, Sun M, Nicosia SV, Cheng JQ (2005) AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 10:975–987

    Article  PubMed  CAS  Google Scholar 

  3. Jiang BH, Liu LZ (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784(1):150–158. doi:10.1016/j.bbapap.2007.09.008

    Article  PubMed  CAS  Google Scholar 

  4. Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, Maehara Y (2008) Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 8(1):27–36

    Article  PubMed  CAS  Google Scholar 

  5. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi:10.1126/science.296.5573.1655296/5573/1655

    Article  PubMed  CAS  Google Scholar 

  6. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50. doi:10.1016/j.drup.2007.11.003

    Article  PubMed  CAS  Google Scholar 

  7. Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J, Arzoomanian R, Alberti D, Wilding G (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10(22):7450–7456. doi:10.1158/1078-0432.CCR-03-0406

    Article  PubMed  Google Scholar 

  8. Posadas EM, Gulley J, Arlen PM, Trout A, Parnes HL, Wright J, Lee MJ, Chung EJ, Trepel JB, Sparreboom A, Chen C, Jones E, Steinberg SM, Daniels A, Figg WD, Dahut WL (2005) A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 4(10):1133–1137

    Article  PubMed  CAS  Google Scholar 

  9. Bailey HH, Mahoney MR, Ettinger DS, Maples WJ, Fracasso PM, Traynor AM, Erlichman C, Okuno SH (2006) Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer 107(10):2462–2467. doi:10.1002/cncr.22308

    Article  PubMed  CAS  Google Scholar 

  10. Leighl NB, Dent S, Clemons M, Vandenberg TA, Tozer R, Warr DG, Crump RM, Hedley D, Pond GR, Dancey JE, Moore MJ (2008) A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 108(1):87–92. doi:10.1007/s10549-007-9584-x

    Article  PubMed  CAS  Google Scholar 

  11. Crul M, Rosing H, de Klerk GJ, Dubbelman R, Traiser M, Reichert S, Knebel NG, Schellens JH, Beijnen JH, ten Bokkel Huinink WW (2002) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 38(12):1615–1621

    Article  PubMed  CAS  Google Scholar 

  12. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    PubMed  CAS  Google Scholar 

  13. Elrod HA, Lin YD, Yue P, Wang X, Lonial S, Khuri FR, Sun SY (2007) The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Mol Cancer Ther 6(7):2029–2038. doi:10.1158/1535-7163.MCT-07-0004

    Article  PubMed  CAS  Google Scholar 

  14. Hennessy BT, Lu Y, Poradosu E, Yu Q, Yu S, Hall H, Carey MS, Ravoori M, Gonzalez-Angulo AM, Birch R, Henderson IC, Kundra V, Mills GB (2007) Pharmacodynamic markers of perifosine efficacy. Clin Cancer Res 13(24):7421–7431. doi:10.1158/1078-0432.CCR-07-0760

    Article  PubMed  CAS  Google Scholar 

  15. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107(10):4053–4062. doi:10.1182/blood-2005-08-3434

    Article  PubMed  CAS  Google Scholar 

  16. David E, Sinha R, Chen J, Sun SY, Kaufman JL, Lonial S (2008) Perifosine synergistically enhances TRAIL-induced myeloma cell apoptosis via up-regulation of death receptors. Clin Cancer Res 14(16):5090–5098. doi:10.1158/1078-0432.CCR-08-0016

    Article  PubMed  CAS  Google Scholar 

  17. Tazzari PL, Tabellini G, Ricci F, Papa V, Bortul R, Chiarini F, Evangelisti C, Martinelli G, Bontadini A, Cocco L, McCubrey JA, Martelli AM (2008) Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res 68(22):9394–9403. doi:10.1158/0008-5472.CAN-08-2815

    Article  PubMed  CAS  Google Scholar 

  18. Fu L, Lin YD, Elrod HA, Yue P, Oh Y, Li B, Tao H, Chen GZ, Shin DM, Khuri FR, Sun SY (2010) c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Mol Cancer 9:315. doi:10.1186/1476-4598-9-315

    Article  PubMed  CAS  Google Scholar 

  19. Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M (1998) APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett 427(1):124–128

    Article  PubMed  CAS  Google Scholar 

  20. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162. doi:10.1172/JCI6926

    Article  PubMed  CAS  Google Scholar 

  21. Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13(11):1817–1824

    Article  PubMed  CAS  Google Scholar 

  22. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299(1):31–38

    PubMed  CAS  Google Scholar 

  23. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R, Hideshima T, Anderson KC (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98(3):795–804

    Article  PubMed  CAS  Google Scholar 

  24. Pollack IF, Erff M, Ashkenazi A (2001) Direct stimulation of apoptotic signaling by soluble Apo2 l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res 7(5):1362–1369

    PubMed  CAS  Google Scholar 

  25. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14(3–4):337–348

    Article  PubMed  CAS  Google Scholar 

  26. Jin H, Yang R, Fong S, Totpal K, Lawrence D, Zheng Z, Ross J, Koeppen H, Schwall R, Ashkenazi A (2004) Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res 64(14):4900–4905. doi:10.1158/0008-5472.CAN-04-040864/14/4900

    Article  PubMed  CAS  Google Scholar 

  27. Daniel D, Yang B, Lawrence DA, Totpal K, Balter I, Lee WP, Gogineni A, Cole MJ, Yee SF, Ross S, Ashkenazi A (2007) Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 110(12):4037–4046. doi:10.1182/blood-2007-02-076075

    Article  PubMed  CAS  Google Scholar 

  28. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med 85(9):923–935. doi:10.1007/s00109-007-0194-1

    Article  PubMed  CAS  Google Scholar 

  29. Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 26(21):3621–3630. doi:10.1200/JCO.2007.15.7198

    Article  PubMed  CAS  Google Scholar 

  30. Duiker EW, Mom CH, de Jong S, Willemse PH, Gietema JA, van der Zee AG, de Vries EG (2006) The clinical trail of TRAIL. Eur J Cancer 42(14):2233–2240. doi:10.1016/j.ejca.2006.03.018

    Article  PubMed  CAS  Google Scholar 

  31. Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C (2009) TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials 4(1):34–41

    Article  PubMed  CAS  Google Scholar 

  32. Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, Ashkenazi A, Jubb AM, Mendelson DS (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28(17):2839–2846. doi:10.1200/JCO.2009.25.1991

    Article  PubMed  CAS  Google Scholar 

  33. Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K, Hill M, Mays T, McCoy T, Fox NL, Halpern W, Corey A, Cohen RB (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25(11):1390–1395. doi:10.1200/JCO.2006.08.8898

    Article  PubMed  CAS  Google Scholar 

  34. Leong S, Cohen RB, Gustafson DL, Langer CJ, Camidge DR, Padavic K, Gore L, Smith M, Chow LQ, von Mehren M, O’Bryant C, Hariharan S, Diab S, Fox NL, Miceli R, Eckhardt SG (2009) Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase I and pharmacokinetic study. J Clin Oncol 27(26):4413–4421. doi:10.1200/JCO.2008.21.7422

    Article  PubMed  CAS  Google Scholar 

  35. Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, Sneller V, Gallant G, Kanzler S (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102(3):506–512. doi:10.1038/sj.bjc.6605507

    Article  PubMed  CAS  Google Scholar 

  36. Wakelee HA, Patnaik A, Sikic BI, Mita M, Fox NL, Miceli R, Ullrich SJ, Fisher GA, Tolcher AW (2010) Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol 21(2):376–381. doi:10.1093/annonc/mdp292

    Article  PubMed  CAS  Google Scholar 

  37. Younes A, Vose JM, Zelenetz AD, Smith MR, Burris HA, Ansell SM, Klein J, Halpern W, Miceli R, Kumm E, Fox NL, Czuczman MS (2010) A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Br J Cancer 103(12):1783–1787. doi:10.1038/sj.bjc.6605987

    Article  PubMed  CAS  Google Scholar 

  38. Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16(6):1701–1708. doi:10.1158/1078-0432.CCR-09-1692

    Article  PubMed  CAS  Google Scholar 

  39. Carlo-Stella C, Lavazza C, Di Nicola M, Cleris L, Longoni P, Milanesi M, Magni M, Morelli D, Gloghini A, Carbone A, Gianni AM (2006) Antitumor activity of human CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand. Hum Gene Ther 17(12):1225–1240. doi:10.1089/hum.2006.17.1225

    Article  PubMed  CAS  Google Scholar 

  40. Lavazza C, Carlo-Stella C, Giacomini A, Cleris L, Righi M, Sia D, Di Nicola M, Magni M, Longoni P, Milanesi M, Francolini M, Gloghini A, Carbone A, Formelli F, Gianni AM (2010) Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood 115(11):2231–2240. doi:10.1182/blood-2009-08-239632

    Article  PubMed  CAS  Google Scholar 

  41. Wilson NS, Yang A, Yang B, Couto S, Stern H, Gogineni A, Pitti R, Marsters S, Weimer RM, Singh M, Ashkenazi A (2012) Proapoptotic activation of death receptor 5 on tumor endothelial cells disrupts the vasculature and reduces tumor growth. Cancer Cell 22(1):80–90. doi:10.1016/j.ccr.2012.05.014

    Article  PubMed  CAS  Google Scholar 

  42. Ronchetti D, Greco A, Compasso S, Colombo G, Dell’Era P, Otsuki T, Lombardi L, Neri A (2001) Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene 20(27):3553–3562. doi:10.1038/sj.onc.1204465

    Article  PubMed  CAS  Google Scholar 

  43. Lavazza C, Carlo-Stella C, Di Nicola M, Longoni P, Milanesi M, Magni M, Gianni AM (2007) Highly efficient gene transfer into mobilized CD34+ hematopoietic cells using serotype-5 adenoviral vectors and BoosterExpress Reagent. Exp Hematol 35(6):888–897. doi:10.1016/j.exphem.2007.02.010

    Article  PubMed  CAS  Google Scholar 

  44. O’Connell KA, Rudmann AA (1993) Cloned spindle and epithelioid cells from murine Kaposi’s sarcoma-like tumors are of endothelial origin. J Invest Dermatol 100(6):742–745

    Article  PubMed  Google Scholar 

  45. Bardin N, Anfosso F, Masse JM, Cramer E, Sabatier F, Le Bivic A, Sampol J, Dignat-George F (2001) Identification of CD146 as a component of the endothelial junction involved in the control of cell–cell cohesion. Blood 98(13):3677–3684

    Article  PubMed  CAS  Google Scholar 

  46. Schrage A, Loddenkemper C, Erben U, Lauer U, Hausdorf G, Jungblut PR, Johnson J, Knolle PA, Zeitz M, Hamann A, Klugewitz K (2008) Murine CD146 is widely expressed on endothelial cells and is recognized by the monoclonal antibody ME-9F1. Histochem Cell Biol 129(4):441–451. doi:10.1007/s00418-008-0379-x

    Article  PubMed  CAS  Google Scholar 

  47. Catley L, Hideshima T, Chauhan D, Neri P, Tassone P, Bronson R, Song W, Tai YT, Munshi NC, Anderson KC (2007) Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol 35(7):1038–1046. doi:10.1016/j.exphem.2007.03.020

    Article  PubMed  CAS  Google Scholar 

  48. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM, Evangelisti C, Ottaviani E, Martinelli G, Testoni N, McCubrey JA, Martelli AM (2008) Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 22(1):147–160. doi:10.1038/sj.leu.2404980

    Article  PubMed  CAS  Google Scholar 

  49. Locatelli SL, Giacomini A, Guidetti A, Cleris L, Mortarini R, Anichini A, Gianni AM, Carlo-Stella C (2013) Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia. doi:10.1038/leu.2013.28

    Google Scholar 

  50. Zou W, Liu X, Yue P, Zhou Z, Sporn MB, Lotan R, Khuri FR, Sun SY (2004) c-Jun NH2-terminal kinase-mediated up-regulation of death receptor 5 contributes to induction of apoptosis by the novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1, 9-dien-28-oate in human lung cancer cells. Cancer Res 64(20):7570–7578. doi:10.1158/0008-5472.CAN-04-1238

    Article  PubMed  CAS  Google Scholar 

  51. Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB (2007) Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 6(21):2633–2639

    Article  PubMed  CAS  Google Scholar 

  52. Barthwal MK, Sathyanarayana P, Kundu CN, Rana B, Pradeep A, Sharma C, Woodgett JR, Rana A (2003) Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J Biol Chem 278(6):3897–3902. doi:10.1074/jbc.M211598200

    Article  PubMed  CAS  Google Scholar 

  53. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901. doi:10.1128/MCB.21.3.893-901.2001

    Article  PubMed  CAS  Google Scholar 

  54. Khodarev NN, Yu J, Labay E, Darga T, Brown CK, Mauceri HJ, Yassari R, Gupta N, Weichselbaum RR (2003) Tumour-endothelium interactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci 116(Pt 6):1013–1022

    Article  PubMed  CAS  Google Scholar 

  55. Zerp SF, Vink SR, Ruiter GA, Koolwijk P, Peters E, van der Luit AH, de Jong D, Budde M, Bartelink H, van Blitterswijk WJ, Verheij M (2008) Alkylphospholipids inhibit capillary-like endothelial tube formation in vitro: antiangiogenic properties of a new class of antitumor agents. Anticancer Drugs 19(1):65–75. doi:10.1097/CAD.0b013e3282f16d3600001813-200801000-00008

    Article  PubMed  CAS  Google Scholar 

  56. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111. doi:10.1016/j.gde.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  57. Bussolati B, Grange C, Camussi G (2011) Tumor exploits alternative strategies to achieve vascularization. FASEB J 25(9):2874–2882. doi:10.1096/fj.10-180323

    Article  PubMed  CAS  Google Scholar 

  58. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201. doi:10.1038/nm1101-1194

    Article  PubMed  CAS  Google Scholar 

  59. van Blitterswijk WJ, Verheij M (2008) Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des 14(21):2061–2074

    Article  PubMed  Google Scholar 

  60. van der Luit AH, Vink SR, Klarenbeek JB, Perrissoud D, Solary E, Verheij M, van Blitterswijk WJ (2007) A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther 6(8):2337–2345. doi:10.1158/1535-7163.MCT-07-0202

    Article  PubMed  Google Scholar 

  61. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2):711–719. doi:10.1182/blood-2006-04-016824

    Article  PubMed  CAS  Google Scholar 

  62. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G (2003) Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 17(9):1159–1161. doi:10.1096/fj.02-0557fje02-0557fje

    PubMed  CAS  Google Scholar 

  63. Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN, Feng D, Kornaga T, Dor T, Dvorak AM, Walsh K, Benjamin LE (2005) Microvascular patterning is controlled by fine-tuning the Akt signal. Proc Natl Acad Sci USA 102(1):128–133. doi:10.1073/pnas.0403198102

    Article  PubMed  CAS  Google Scholar 

  64. Bussolati B, Assenzio B, Deregibus MC, Camussi G (2006) The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med (Berl) 84(10):852–863. doi:10.1007/s00109-006-0075-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Marco Presta (Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy) for continuous support and critical revision of the manuscript. This work was supported in part by grants from the Ministry of Education, University and Research (Rome, Italy), the Ministry of Health (Ricerca Finalizzata 2010 to C.C.-S.), and the Italian Association for Cancer Research (MCO - 9998 to C.C.-S. and A.M.G.).

Conflict of interest

The authors declare no competing financial interests.

Ethical standards

Animal experiments were performed according to the Italian laws (D.L. 116/92 and following additions) that enforce the EU 86/109 Directive and were approved by the institutional Ethical Committee for Animal Experimentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro M. Gianni or Carmelo Carlo-Stella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12099 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacomini, A., Righi, M., Cleris, L. et al. Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34+ cells. Angiogenesis 16, 707–722 (2013). https://doi.org/10.1007/s10456-013-9348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9348-7

Keywords

Navigation