Skip to main content
Log in

Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

An Erratum to this article was published on 16 May 2013

Abstract

The goal of this study was to develop a molecular imaging agent that can allow for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of CD105 expression in metastatic breast cancer. TRC105, a chimeric anti-CD105 monoclonal antibody, was labeled with both a NIRF dye (i.e., IRDye 800CW) and 64Cu to yield 64Cu-NOTA-TRC105-800CW. Flow cytometry analysis revealed no difference in CD105 binding affinity/specificity between TRC105 and NOTA-TRC105-800CW. Serial bioluminescence imaging (BLI) was carried out to non-invasively monitor the lung tumor burden in BALB/c mice, after intravenous injection of firefly luciferase-transfected 4T1 (i.e., fLuc-4T1) murine breast cancer cells to establish the experimental lung metastasis model. Serial PET imaging revealed that fLuc-4T1 lung tumor uptake of 64Cu-NOTA-TRC105-800CW was 11.9 ± 1.2, 13.9 ± 3.9, and 13.4 ± 2.1 %ID/g at 4, 24, and 48 h post-injection respectively (n = 3). Biodistribution studies, blocking fLuc-4T1 lung tumor uptake with excess TRC105, control experiments with 64Cu-NOTA-cetuximab-800CW (which served as an isotype-matched control), ex vivo BLI/PET/NIRF imaging, autoradiography, and histology all confirmed CD105 specificity of 64Cu-NOTA-TRC105-800CW. Successful PET/NIRF imaging of tumor angiogenesis (i.e., CD105 expression) in the breast cancer experimental lung metastasis model warrants further investigation and clinical translation of dual-labeled TRC105-based agents, which can potentially enable early detection of small metastases and image-guided surgery for tumor removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Eckhardt BL, Francis PA, Parker BS, Anderson RL (2012) Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov 11:479–497

    Article  PubMed  CAS  Google Scholar 

  3. Weigelt B, Peterse JL, van ‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  PubMed  CAS  Google Scholar 

  4. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  5. Alauddin MM (2012) Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging 2:55–76

    PubMed  CAS  Google Scholar 

  6. Iagaru A (2011) 18F-FDG PET/CT: timing for evaluation of response to therapy remains a clinical challenge. Am J Nucl Med Mol Imaging 1:63–64

    PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  8. von Elstermann M (2008) Metastasis: which way to the lungs? Nat Rev Cancer 8:410–411

    Article  Google Scholar 

  9. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    Article  PubMed  CAS  Google Scholar 

  10. Fonsatti E, Nicolay HJ, Altomonte M, Covre A, Maio M (2010) Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 86:12–19

    Article  PubMed  CAS  Google Scholar 

  11. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ et al (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937

    Article  PubMed  CAS  Google Scholar 

  12. Eary JF, Hawkins DS, Rodler ET, Conrad EU 3rd (2011) 18F-FDG PET in sarcoma treatment response imaging. Am J Nucl Med Mol Imaging 1:47–53

    PubMed  Google Scholar 

  13. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P et al (2012) The clinical use of PET with 11C-acetate. Am J Nucl Med Mol Imaging 2:33–47

    PubMed  CAS  Google Scholar 

  14. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  PubMed  CAS  Google Scholar 

  15. Nolting DD, Nickels ML, Guo N, Pham W (2012) Molecular imaging probe development: a chemistry perspective. Am J Nucl Med Mol Imaging 2:273–306

    PubMed  Google Scholar 

  16. Zhang Y, Hong H, Engle JW, Yang Y, Theuer CP, Barnhart TE et al (2012) Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol Pharm 9:645–653

    Article  PubMed  CAS  Google Scholar 

  17. Hong H, Zhang Y, Severin GW, Yang Y, Engle JW, Niu G et al (2012) Multimodality imaging of breast cancer experimental lung metastasis with bioluminescence and a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW. Mol Pharm 9:2339–2349

    Article  CAS  Google Scholar 

  18. Zhang Y, Hong H, Severin GW, Engle JW, Yang Y, Goel S et al (2012) ImmunoPET and near-infrared fluorescence imaging of CD105 expression using a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW. Am J Transl Res 4:333–346

    PubMed  CAS  Google Scholar 

  19. Seon BK, Haba A, Matsuno F, Takahashi N, Tsujie M, She X et al (2011) Endoglin-targeted cancer therapy. Curr Drug Deliv 8:135–143

    Article  PubMed  CAS  Google Scholar 

  20. Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD et al (2012) A phase I first-in-human study of TRC105 (Anti-Endoglin Antibody) in patients with advanced cancer. Clin Cancer Res 18:4820–4829

    Article  PubMed  CAS  Google Scholar 

  21. Cao Q, Cai W, Niu G, He L, Chen X (2008) Multimodality imaging of IL-18-binding protein-Fc therapy of experimental lung metastasis. Clin Cancer Res 14:6137–6145

    Article  PubMed  CAS  Google Scholar 

  22. Hong H, Severin GW, Yang Y, Engle JW, Zhang Y, Barnhart TE et al (2012) Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur J Nucl Med Mol Imaging 39:138–148

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W (2012) Positron emission tomography and near-infrared fluorescence imaging of vascular endothelial growth factor with dual-labeled bevacizumab. Am J Nucl Med Mol Imaging 2:1–13

    PubMed  CAS  Google Scholar 

  24. Hong H, Benink HA, Zhang Y, Yang Y, Uyeda HT, Engle JW et al (2011) HaloTag: a novel reporter gene for positron emission tomography. Am J Transl Res 3:392–403

    PubMed  CAS  Google Scholar 

  25. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 66:9673–9681

    Article  PubMed  CAS  Google Scholar 

  26. Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ et al (2012) In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 33:4147–4156

    Article  PubMed  CAS  Google Scholar 

  27. Hong H, Yang Y, Zhang Y, Engle JW, Barnhart TE, Nickles RJ et al (2011) Positron emission tomography imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging 38:1335–1343

    Article  PubMed  CAS  Google Scholar 

  28. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–2902

    Article  PubMed  CAS  Google Scholar 

  29. Dearling JL, Voss SD, Dunning P, Snay E, Fahey F, Smith SV et al (2011) Imaging cancer using PET–the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody. Nucl Med Biol 38:29–38

    Article  PubMed  CAS  Google Scholar 

  30. Geus-Oei LF, Oyen WJ (2008) Predictive and prognostic value of FDG-PET. Cancer Imaging 8:70–80

    Article  PubMed  Google Scholar 

  31. Iagaru A, Masamed R, Keesara S, Conti PS (2007) Breast MRI and 18F FDG PET/CT in the management of breast cancer. Ann Nucl Med 21:33–38

    Article  PubMed  Google Scholar 

  32. van Dongen GA, Vosjan MJ (2010) Immuno-positron emission tomography: shedding light on clinical antibody therapy. Cancer Biother Radiopharm 25:375–385

    Article  PubMed  Google Scholar 

  33. Wu AM (2009) Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 50:2–5

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, Hong H, Orbay H, Valdovinos HF, Nayak TR, Theuer CP, et al. (2013) PET imaging of CD105/endoglin expression with a 61/64Cu-labeled Fab antibody fragment. Eur J Nucl Med Mol Imaging (ePub)

  35. Hong H, Zhang Y, Orbay H, Valdovinos HF, Nayak TR, Bean J, et al. (2013) Positron emission tomography imaging of tumor angiogenesis with a 61/64Cu-labeled F(ab’)2 antibody fragment. Mol Pharm (ePub)

Download references

Acknowledgments

This work was supported, in part, by the University of Wisconsin Carbone Cancer Center, the Department of Defense (W81XWH-11-1-0644), and the Elsa U. Pardee Foundation. We thank Dr. Xiaoyuan Chen and Dr. Gang Niu for providing the fLuc-4T1 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Hong, H., Nayak, T.R. et al. Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence. Angiogenesis 16, 663–674 (2013). https://doi.org/10.1007/s10456-013-9344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9344-y

Keywords

Navigation