Skip to main content

Advertisement

Log in

Mechanistic study of the proangiogenic effect of osteoprotegerin

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Osteoprotegerin (OPG), a soluble tumour necrosis factor receptor superfamily member, inhibits RANKL-mediated osteoclastogenesis. We have previously reported that OPG enhances the proangiogenic properties of endothelial colony-forming cells (ECFCs) in vitro, and promotes vasculogenesis in vivo. Here we investigated how OPG promotes neovascularisation. Proteomic experiments showed that OPG pretreatment affected ECFCs protein expression in two ways, 23 spots being down-regulated and 6 upregulated. These spots corresponded to proteins involved in cell motility, adhesion, signal transduction and apoptosis. In keeping with these proteomic results, we found that OPG induced ECFCs adhesion to activated endothelium in shear stress conditions, promoting intermediate but not focal adhesion to fibronectin and collagen. Treatment with OPG induced a reorganization of the ECFCs cytoskeleton, with the emergence of cell protrusions characteristic of a migratory phenotype. These effects correlated with decreased FAK phosphorylation and enhanced integrin αVβ3 expression. OPG drastically reduced caspase-3/7 activities and maintained ECFCs viability after 48 h of treatment. All these effects were significantly attenuated by ECFCs incubation with the CXCR4 antagonist AMD-3100, and by prior heparan sulphate proteoglycan disruption. The proangiogenic properties of OPG appeared to be mediated by the proteoglycan syndecan-1, although OPG 1-194 lacking its heparin-binding domain still had pro-vasculogenic effects in vitro and in vivo. These results suggest that OPG may interact with ECFCs by binding to HSPGs/syndecan-1, thereby induce an anti-adhesive effect and promoting ECFCs migration through a SDF-1/CXCR4 dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319. doi:S0092-8674(00)80209-3

    Article  PubMed  CAS  Google Scholar 

  2. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  3. Baud’huin M, Lamoureux F, Duplomb L, Rédini F, Heymann D (2007) RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci 64:2334–2350. doi:10.1007/s00018-007-7104-0

    Article  PubMed  Google Scholar 

  4. Cross SS, Yang Z, Brown NJ, Balasubramanian SP, Evans CA, Woodward JK, Neville-Webbe HL, Lippitt JM, Reed MWR, Coleman RE et al (2006) Osteoprotegerin (OPG)—a potential new role in the regulation of endothelialcell phenotype and tumour angiogenesis? Int J Cancer 118:1901–1908. doi:10.1002/ijc.21606

    Article  PubMed  CAS  Google Scholar 

  5. Malyankar UM (2000) Osteoprotegerin Is an alpha vbeta 3-induced, NF-kappa B-dependent Survival Factor for Endothelial Cells. J Biol Chem 275:20959–20962. doi:10.1074/jbc.C000290200

    Article  PubMed  CAS  Google Scholar 

  6. Benslimane-Ahmim Z, Heymann D, Dizier B, Lokajczyk A, Brion R, Laurendeau I, BiÈChe I, Smadja DM, Galy-Fauroux I, Colliec-Jouault S et al (2011) Osteoprotegerin, a new actor in vasculogenesis, stimulates endothelial colony-forming cells properties. JTH 9:834–843. doi:10.1111/j.1538-7836.2011.04207.x

    PubMed  CAS  Google Scholar 

  7. Chollet ME, Brouland JP, Bal dit Sollier C, Bauduer V, Drouet L, Bellucci S (2010) Evidence of a colocalisation of osteoprotegerin (OPG) with von Willebrand factor (VWF) in platelets and megakaryocytes alpha granules. Studies from normal and grey platelets. Br J Haematol 148:805–807. doi:10.1111/j.1365-2141.2009.07989x

    Article  PubMed  CAS  Google Scholar 

  8. Secchiero P, Corallini F, Rimondi E, Chiaruttini C, di Iasio MG, Rustighi A, Del Sal G, Zauli G (2009) Activation of the p53 pathway down-regulates the osteoprotegerin expression and release by vascular endothelial cells. Blood 111:1287–1294. doi:10.1182/blood-2007-05-092031

    Article  Google Scholar 

  9. Heymann MF, Herisson F, Davaine JM, Charrier C, Battaglia S, Passuti N, Lambert G, Goueffic Y, Heymann D (2012) Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds. Cytokine 58:300–306. doi:10.1016/j.cyto.2012.02.004

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi-Sakamoto M, Hirose K, Nishikata M, Isogai E, Chiba I (2006) Osteoprotegerin protects endothelial cells against apoptotic cell death induced byPorphyromonas gingivaliscysteine proteinases. FEMS Microbiol Lett 264:238–245. doi:10.1111/j.1574-6968.2006.00458.x

    Article  PubMed  CAS  Google Scholar 

  11. McGonigle JS, Giachelli CM, Scatena M (2008) Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis 12:35–46. doi:10.1007/s10456-008-9127-z

    Article  PubMed  Google Scholar 

  12. Holen I, Shipman CM (2006) Role of osteoprotegerin (OPG) in cancer. Clin Sci (Lond) 110:279–291. doi:10.1042/CS20050175

    Article  CAS  Google Scholar 

  13. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57. doi:10.1016/j.bbcan.2004.05.002

    PubMed  CAS  Google Scholar 

  14. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367

    Article  PubMed  CAS  Google Scholar 

  15. Woods A, Couchman JR (1998) Syndecans: synergistic activators of cell adhesion. Trends Cell Biol 8:189–192. doi:S0962-8924(98)01244-6

    Article  PubMed  CAS  Google Scholar 

  16. Nybo M, Rasmussen LM (2008) Osteoprotegerin released from the vascular wall by heparin mainly derives from vascular smooth muscle cells. Atherosclerosis 201:33–35. doi:10.1016/j.atherosclerosis.2008.03.026

    Article  PubMed  CAS  Google Scholar 

  17. Mosheimer BA (2005) Syndecan-1 Is Involved in Osteoprotegerin-Induced Chemotaxis in Human Peripheral Blood Monocytes. JCEM 90:2964–2971. doi:10.1210/jc.2004-1895

    PubMed  CAS  Google Scholar 

  18. Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522. doi:10.1016/j.yjmcc.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  19. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. doi:10.1182/blood-2004-04-1396

    Article  PubMed  CAS  Google Scholar 

  20. Zemani F, Benisvy D, Galyfauroux I, Lokajczyk A, Colliecjouault S, Uzan G, Fischer A, Boissonvidal C (2005) Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol 70:1167–1175. doi:10.1016/j.bcp2005.07.014

    Article  PubMed  CAS  Google Scholar 

  21. Dias JV, Benslimane-Ahmim Z, Egot M, Lokajczyk A, Grelac F, Galy-Fauroux I, Juliano L, Le-Bonniec B, Takiya CM, Fischer A-M et al (2012) A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells. Biochem Pharmacol 84:1014–1023. doi:10.1016/j.bcp.2012.07.006

    Article  PubMed  CAS  Google Scholar 

  22. Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C (2008) Ex Vivo Priming of Endothelial Progenitor Cells With SDF-1 Before Transplantation Could Increase Their Proangiogenic Potential. ATVB 28:644–650. doi:10.1161/atvbaha.107.160044

    CAS  Google Scholar 

  23. Sanson M, Ingueneau C, Vindis C, Thiers JC, Glock Y, Rousseau H, Sawa Y, Bando Y, Mallat Z, Salvayre R et al (2008) Oxygen-regulated protein-150 prevents calcium homeostasis deregulation and apoptosis induced by oxidized LDL in vascular cells. Cell Death Differ 15:1255–1265. doi:10.1038/cdd.2008.36

    Article  PubMed  CAS  Google Scholar 

  24. Bazzoni G, Dejana E, Lampugnani MG (1999) Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr Opin Cell Biol 11:573–581

    Article  PubMed  CAS  Google Scholar 

  25. Swiatkowska M, Szymański J, Padula G, Cierniewski CS (2008) Interaction and functional association of protein disulfide isomerase with αVβ3 integrin on endothelial cells. FEBS J 275:1813–1823. doi:10.1111/j.1742-4658.2008.06339.x

    Article  PubMed  CAS  Google Scholar 

  26. Jasuja R, Furie B, Furie BC (2010) Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood 116:4665–4674. doi:10.1182/blood-2010-04-278184

    Article  PubMed  CAS  Google Scholar 

  27. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA (2000) Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20:4474–4481

    Article  PubMed  CAS  Google Scholar 

  28. Demarchi F, Schneider C (2007) The calpain system as a modulator of stress/damage response. Cell Cycle 15:136–138

    Google Scholar 

  29. Vincent P, Collette Y, Marignier R, Vuaillat C, Rogemond V, Davoust N, Malcus C, Cavagna S, Gessain A, Machuca-Gayet I et al (2005) A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol 175:7650–7660. doi:175/11/7650

    PubMed  CAS  Google Scholar 

  30. Liu T, Guevara OE, Warburton RR, Hill NS, Gaestel M, Kayyali US (2010) Regulation of vimentin intermediate filaments in endothelial cells by hypoxia. Am J Physiol Cell Physiol 299:C363–C373. doi:10.1152/ajpcell.00057.2010

    Article  PubMed  CAS  Google Scholar 

  31. Hsieh YCS, Hsieh SJ, Chang YS, Hsueh CM, Hsu SL (2009) The lipoxygenase inhibitor, baicalein, modulates cell adhesion and migration by up-regulation of integrins and vinculin in rat heart endothelial cells. Br J Pharmacol 151:1235–1245. doi:10.1038/sj.bjp.0707345

    Article  Google Scholar 

  32. Ohta T, Kinoshita T, Naito M, Nozaki T, Masutani M, Tsuruo T, Miyajima A (1997) Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem 272:23111–23116

    Article  PubMed  CAS  Google Scholar 

  33. Krummel MF, Macara I (2006) Maintenance and modulation of T cell polarity. Nat Immunol 7:1143–1149. doi:10.1038/ni1404

    Article  PubMed  CAS  Google Scholar 

  34. Standal T, Seidel C, Hjertner O, Plesner T, Sanderson RD, Waage A, Borset M, Sundan A (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100:3002–3007. doi:10.1182/blood-2002-04-1190

    Article  PubMed  CAS  Google Scholar 

  35. Wilcox-Adelman SA, Denhez F, Goetinck PF (2002) Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 277:32970–32977. doi:10.1074/jbc.M201283200

    Article  PubMed  CAS  Google Scholar 

  36. Lamoureux F, Picarda G, Garrigue-Antar L, Baud’huin M, Trichet V, Vidal A, Miot-Noirault E, Pitard B, Heymann D, Redini F (2009) Glycosaminoglycans as Potential Regulators of Osteoprotegerin Therapeutic Activity in Osteosarcoma. Cancer Res 69:526–536. doi:10.1158/0008-5472.can-08-2648

    Article  PubMed  CAS  Google Scholar 

  37. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115. doi:10.1002/(SICI)1522-2683(20000401)21:6<1104:AID-ELPS1104>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  38. VandenBerg E, Reid MD, Edwards JD, Davis HW (2004) The role of the cytoskeleton in cellular adhesion molecule expression in tumor necrosis factor-stimulated endothelial cells. J Cell Biochem 91:926–937. doi:10.1002/jcb.20011

    Article  PubMed  CAS  Google Scholar 

  39. Couchman JR, Rees DA (1979) The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J Cell Sci 39:149–165

    PubMed  CAS  Google Scholar 

  40. Murphy-Ullrich JE, Gurusiddappa S, Frazier WA, Hook M (1993) Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J Biol Chem 268:26784–26789

    PubMed  CAS  Google Scholar 

  41. Gao B, Saba TM, Tsan MF (2002) Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration. Am J Physiol Cell Physiol 283:C1196–C1205. doi:10.1152/ajpcell.00064.2002

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I (2008) Role of αv integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76:139–144. doi:10.1016/j.mvr.2008.06.004

    Article  PubMed  CAS  Google Scholar 

  43. Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DA, del Zoppo GJ (1996) Integrin avb3 Is Expressed in Selected Microvessels after Focal Cerebral Ischemia. Am J Pathol 149:8

    Google Scholar 

  44. Banki K, Hutter E, Gonchoroff NJ, Perl A (1998) Molecular ordering in HIV-induced apoptosis. Oxidative stress, activation of caspases, and cell survival are regulated by transaldolase. J Biol Chem 273:11944–11953

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi Y, Meyerkord CL, Wang HG (2009) Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ 16:947–955. doi:10.1038/cdd.2009.19

    Article  PubMed  CAS  Google Scholar 

  46. Scatena M, Giachelli C (2002) The alpha(v)beta3 integrin, NF-kappaB, osteoprotegerin endothelial cell survival pathway. Potential role in angiogenesis. Trends Cardiovasc Med 12:83–88. doi:S1050173801001517

    Article  PubMed  CAS  Google Scholar 

  47. Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, Varner J (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest 116:652–662. doi:10.1172/JCI24751

    Article  PubMed  CAS  Google Scholar 

  48. Mulloy B, Rider CC (2006) Cytokines and proteoglycans: an introductory overview. Biochem Soc Trans 34:409–413. doi:10.1042/BST0340409

    Article  PubMed  CAS  Google Scholar 

  49. Sasisekharan R, Raman R, Prabhakar V (2006) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231. doi:10.1146/annurev.bioeng.8.061505.095745

    Article  PubMed  CAS  Google Scholar 

  50. Théoleyre S, Kwan Tat S, Vusio P, Blanchard F, Gallagher J, Ricard-Blum S, Fortun Y, Padrines M, Rédini F, Heymann D (2006) Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: role in the interactions with receptor activator of nuclear factor κB ligand (RANKL) and RANK. Biochem Biophys Res Commun 347:460–467. doi:10.1016/j.bbrc.2006.06.120

    Article  PubMed  Google Scholar 

  51. Celie JW, Katta KK, Adepu S, Melenhorst WB, Reijmers RM, Slot EM, Beelen RH, Spaargaren M, Ploeg RJ, Navis G et al (2012) Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney Int 81:651–661. doi:10.1038/ki.2011.425ki2011425

    Article  PubMed  CAS  Google Scholar 

  52. Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC (2009) Syndecan-1 regulates v 3 and v 5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206:691–705. doi:10.1084/jem.20081278

    Article  PubMed  CAS  Google Scholar 

  53. Iozzo RV (2001) Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108:165–167. doi:10.1172/JCI13560

    PubMed  CAS  Google Scholar 

  54. Kreuger J, Jemth P, Sanders-Lindberg E, Eliahu L, Ron D, Basilico C, Salmivirta M, Lindahl U (2005) Fibroblast growth factors share binding sites in heparan sulphate. Biochem J 389:145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Martin and the technicians from the IMTCE animal facilities (Paris Descartes University). We are also indebted to the nursing services of Hôpital des Diaconnesses (Paris) and Hôpital des Instructions et des Armées de Begin (Saint Mandé) for providing umbilical cord blood samples. This work was supported in part by research grants from Institut Français de la Recherche sur la Mer (08/5210807). Z. Benslimane-Ahmim received grants from Groupe d’Etude et de Recherches sur l’Hémostase (GEHT). CNRS pays the salary of C. Boisson-Vidal.

Conflict of interest

  The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahia Benslimane-Ahmim.

Additional information

Zahia Benslimane-Ahmim and Florence Poirier contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 289 kb)

Supplementary material 2 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benslimane-Ahmim, Z., Poirier, F., Delomenie, C. et al. Mechanistic study of the proangiogenic effect of osteoprotegerin. Angiogenesis 16, 575–593 (2013). https://doi.org/10.1007/s10456-013-9337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9337-x

Keywords

Navigation