Skip to main content
Log in

New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the combination of their C-terminal domains, which determines their respective structure, availability and affinity for co-receptors. As controversies still exist about the specific roles of these exon-encoded domains, we systematically compared the properties of eight natural and artificial variants containing the domains encoded by exons 1–4 and various combinations of the domains encoded by exons 5, 7 and 8a or 8b. All the variants (VEGF111a, VEGF111b, VEGF121a, VEGF121b, VEGF155a, VEGF155b, VEGF165a, VEGF165b) have a similar affinity for VEGF-R2, as determined by Surface plasmon resonance analyses. They strongly differ however in terms of binding to neuropilin-1 and heparin/heparan sulfate proteoglycans. Data indicate that the 6 amino acids encoded by exon 8a must be present and cooperate with those of exons 5 or 7 for efficient binding, which was confirmed in cell culture models. We further showed that VEGF165b has inhibitory effects in vitro, as previously reported, but that the shortest VEGF variant possessing also the 6 amino acids encoded by exon 8b (VEGF111b) is remarkably proangiogenic, demonstrating the critical importance of domain interactions for defining the VEGF properties. The number, size and localization of newly formed blood vessels in a model of tumour angiogenesis strongly depend also on the C-terminal domain composition, suggesting that association of several VEGF isoforms may be more efficient for treating ischemic diseases than the use of any single variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J Off Publ Fed Am Soc Exper Biol 13(1):9–22

    CAS  Google Scholar 

  2. Ferrara N (2004) Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9(Suppl 1):2–10

    Article  PubMed  CAS  Google Scholar 

  3. Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24(1):75–78

    Article  PubMed  CAS  Google Scholar 

  4. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    PubMed  CAS  Google Scholar 

  5. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–745

    Article  PubMed  CAS  Google Scholar 

  6. Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276(27):25520–25531. doi:10.1074/jbc.M102315200

    Article  PubMed  CAS  Google Scholar 

  7. Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Liou GI, Caldwell RW (2005) Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 6(4):511–524

    Article  PubMed  CAS  Google Scholar 

  8. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 3(11):1222–1227

    Article  PubMed  CAS  Google Scholar 

  9. Yang YH, Rajaiah R, Ruoslahti E, Moudgil KD (2011) Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proc Natl Acad Sci USA 108(31):12857–12862. doi:10.1073/pnas.1103569108

    Article  PubMed  CAS  Google Scholar 

  10. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16. doi:10.1159/000088479

    Article  PubMed  CAS  Google Scholar 

  11. Claffey KP, Senger DR, Spiegelman BM (1995) Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim Biophys Acta 1246(1):1–9

    Article  PubMed  Google Scholar 

  12. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271(13):7788–7795

    Article  PubMed  CAS  Google Scholar 

  13. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691. doi:10.1083/jcb.200409115

    Article  PubMed  CAS  Google Scholar 

  14. Soker S, Fidder H, Neufeld G, Klagsbrun M (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 271(10):5761–5767

    Article  PubMed  CAS  Google Scholar 

  15. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N, Tong RK, Kowalski J, Yee SF, Pacheco G, Ross S, Cheng Z, Le Couter J, Plowman G, Peale F, Koch AW, Wu Y, Bagri A, Tessier-Lavigne M, Watts RJ (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11(1):53–67. doi:10.1016/j.ccr.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  16. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci CMLS 63(5):601–615. doi:10.1007/s00018-005-5426-3

    Article  CAS  Google Scholar 

  17. Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exper Biol 22(8):3078–3086. doi:10.1096/fj.08-107219

    CAS  Google Scholar 

  18. Ballmer-Hofer K, Andersson AE, Ratcliffe LE, Berger P (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118(3):816–826. doi:10.1182/blood-2011-01-328773

    Article  PubMed  CAS  Google Scholar 

  19. Harris S, Craze M, Newton J, Fisher M, Shima DT, Tozer GM, Kanthou C (2012) Do anti-angiogenic VEGF (VEGFxxxb) isoforms exist? A cautionary tale. PLoS ONE 7(5):e35231. doi:10.1371/journal.pone.0035231

    Article  PubMed  CAS  Google Scholar 

  20. Mineur P, Colige AC, Deroanne CF, Dubail J, Kesteloot F, Habraken Y, Noel A, Voo S, Waltenberger J, Lapiere CM, Nusgens BV, Lambert CA (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179(6):1261–1273. doi:10.1083/jcb.200703052

    Article  PubMed  CAS  Google Scholar 

  21. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4(12):1317–1326

    PubMed  CAS  Google Scholar 

  22. Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272(20):13390–13396

    Article  PubMed  CAS  Google Scholar 

  23. Herve MA, Buteau-Lozano H, Vassy R, Bieche I, Velasco G, Pla M, Perret G, Mourah S, Perrot-Applanat M (2008) Overexpression of vascular endothelial growth factor 189 in breast cancer cells leads to delayed tumor uptake with dilated intratumoral vessels. Am J Pathol 172(1):167–178. doi:10.2353/ajpath.2008.070181

    Article  PubMed  CAS  Google Scholar 

  24. Parker MW, Xu P, Li X, Vander Kooi CW (2012) Structural basis for the selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem. doi:10.1074/jbc.M111.331140

  25. Cebe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, Manlius C, Wood J, Ballmer-Hofer K (2006) A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci CMLS 63(17):2067–2077. doi:10.1007/s00018-006-6254-9

    Article  CAS  Google Scholar 

  26. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M, Perret GY (2006) Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79(25):2370–2381. doi:10.1016/j.lfs.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  27. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822–7835. doi:10.1158/0008-5472.CAN-04-0934

    Article  PubMed  CAS  Google Scholar 

  28. Catena R, Larzabal L, Larrayoz M, Molina E, Hermida J, Agorreta J, Montes R, Pio R, Montuenga LM, Calvo A (2010) VEGFb and VEGFb are weakly angiogenic isoforms of VEGF-A. Mol Cancer 9:320. doi:10.1186/1476-4598-9-320

    Article  PubMed  CAS  Google Scholar 

  29. Lambert CA, Colige AC, Munaut C, Lapiere CM, Nusgens BV (2001) Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol J Internat Soc Matrix Biol 20(7):397–408

    Article  CAS  Google Scholar 

  30. Hua J, Spee C, Kase S, Rennel ES, Magnussen AL, Qiu Y, Varey A, Dhayade S, Churchill AJ, Harper SJ, Bates DO, Hinton DR (2010) Recombinant human VEGF165b inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 51(8):4282–4288. doi:10.1167/iovs.09-4360

    Article  PubMed  Google Scholar 

  31. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35(9):3429–3435

    PubMed  CAS  Google Scholar 

  32. Penn JS, Rajaratnam VS (2003) Inhibition of retinal neovascularization by intravitreal injection of human rPAI-1 in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 44(12):5423–5429

    Article  PubMed  Google Scholar 

  33. Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM (2010) Stromal regulation of vessel stability by MMP14 and TGFbeta. Disease Mod Mech 3(5–6):317–332. doi:10.1242/dmm.003863

    Article  CAS  Google Scholar 

  34. Kawamura H, Li X, Harper SJ, Bates DO, Claesson-Welsh L (2008) Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res 68(12):4683–4692. doi:10.1158/0008-5472.CAN-07-6577

    Article  PubMed  CAS  Google Scholar 

  35. Magnussen AL, Rennel ES, Hua J, Bevan HS, Beazley Long N, Lehrling C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ (2010) VEGF-A165b is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 51(8):4273–4281. doi:10.1167/iovs.09-4296

    Article  PubMed  Google Scholar 

  36. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. The Journal of biological chemistry 267(36):26031–26037

    PubMed  CAS  Google Scholar 

  37. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, Harper SJ (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62(14):4123–4131

    PubMed  CAS  Google Scholar 

  38. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8(11):880–887. doi:10.1038/nrc2505

    Article  PubMed  CAS  Google Scholar 

  39. Rennel ES, Varey AH, Churchill AJ, Wheatley ER, Stewart L, Mather S, Bates DO, Harper SJ (2009) VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer 101(7):1183–1193. doi:10.1038/sj.bjc.6605249

    Article  PubMed  CAS  Google Scholar 

  40. Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21(5):687–690. doi:10.1091/mbc.E09-07-0590

    Article  PubMed  CAS  Google Scholar 

  41. Muller YA, Heiring C, Misselwitz R, Welfle K, Welfle H (2002) The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor. J Biol Chem 277(45):43410–43416. doi:10.1074/jbc.M206438200

    Article  PubMed  CAS  Google Scholar 

  42. Iyer S, Acharya KR (2011) Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J 278(22):4304–4322. doi:10.1111/j.1742-4658.2011.08350.x

    Article  PubMed  CAS  Google Scholar 

  43. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85(2):357–368

    Article  PubMed  CAS  Google Scholar 

  44. Grunewald FS, Prota AE, Giese A (1804) Ballmer-Hofer K (2010) Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim Biophys Acta 3:567–580. doi:10.1016/j.bbapap.2009.09.002

    Google Scholar 

  45. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5(12):1806–1814

    Article  PubMed  CAS  Google Scholar 

  46. Vander Kooi CW, Jusino MA, Perman B, Neau DB, Bellamy HD, Leahy DJ (2007) Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci USA 104(15):6152–6157. doi:10.1073/pnas.0700043104

    Article  PubMed  CAS  Google Scholar 

  47. Liu W, Parikh AA, Stoeltzing O, Fan F, McCarty MF, Wey J, Hicklin DJ, Ellis LM (2005) Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF. Cytokine 32(5):206–212. doi:10.1016/j.cyto.2005.09.009

    Article  PubMed  CAS  Google Scholar 

  48. Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerjee SK (2008) VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3 K axis. Biochemistry 47(11):3345–3351. doi:10.1021/bi8000352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The scientific advice of Professor B. Nusgens, the technical assistance of A. Hoffmann, A. Heyeres, F. Olivier and L. Duwez and the informatic skill of N. Garbacki were greatly appreciated. We thank the Genotranscriptomics and Proteomics Platforms of the GIGA (University of Liège). This work was supported by the “Belgian Foundation against Cancer, Nonprofit Organization” (197-2008-FCC-VEGF111), the “Région Wallonne” (DGO6, n° 816865), Skin Cancer Research Fund (ScaRF), INSERM, University Paris 13 and FP7 Nanoantenna Project from EU.

Conflict of interest

Prof Bates is an inventor on patents describing the potential uses of VEGF165b. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Delcombel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2012_9320_MOESM1_ESM.tif

Supplemental Fig. 1 Binding of VEGF variants to Heparin. Binding of VEGF variants (200 nM) to heparin was measured by surface plasmon resonance. (a) HBS-EP buffer, (b) VEGF111a, (c) VEGF121a, (d) VEGF155a, (e) VEGF165a and (f) VEGF165b were injected (black arrow) for ~ 250 s followed by injection of HBS-EP buffer (open arrow) in order to visualize the dissociation rate. RU: Response in arbitrary units (TIFF 9789 kb)

10456_2012_9320_MOESM2_ESM.tif

Supplemental Fig 2 Effect of A7R and R8R on VEGFR2-VEGF-NRP1-H complex formation. (a-c) The formation of the VEGFR2-VEGF-NRP1-H complex was measured by surface plasmon resonance. VEGF-R2 was coated on the sensorchip and successive injections were made as indicated on the drawings. (d) Quantification of the response induced by the addition of NRP1 + H in the absence or presence of mimetic peptides (A7R and R8R). Results are expressed in percentage of values recorded in absence of peptide. b: HBS-EP buffer; 165a: VEGF165a; NRP1: neuropilin-1; H: heparin; A7R: peptide mimetic of E8a-encoded sequence; R8R: peptide mimetic of E5-encoded sequence (TIFF 9407 kb)

10456_2012_9320_MOESM3_ESM.tif

Supplemental Fig. 3 Time-course experiment evaluating the effects of VEGF variants on ERK1/2 phosphorylation in endothelial cells. PAEC-R2 (a) and HUVEC (b) were treated with 1nM of VEGF variants for 0, 1, 5, 15 and 30 min in serum free medium. Protein extracts were then analyzed by western blot using ERK1/2 (ERK) and phospho-ERK1/2 (P-ERK) specific antibodies (TIFF 29455 kb)

10456_2012_9320_MOESM4_ESM.tif

Supplemental Fig. 4 Effect of increasing concentrations of VEGF variants on ERK1/2 phosphorylation in endothelial cells. PAEC-R2 (a, c, e, g) and HUVEC (b, d, f, h) were incubated for 10 min in serum free medium containing 0.1nM (a, b), 0.3nM (c, d), 1nM (e, f) or 3nM (g, h) of the different VEGF variants. Protein extracts were then analyzed by western blot using antibodies against ERK1/2 (ERK) or phospho-ERK1/2 (P-ERK) (TIFF 32326 kb)

10456_2012_9320_MOESM5_ESM.tif

Supplemental Fig 5 Effect of R8R on VEGF-induced signaling in vitro. PAEC-R2 (a) and PAEC-R2-NRP1 (b) were treated for 10’ at 37°c with 1nM of VEGF111a or with VEGF165a in the absence or presence of R8R (300 μM). Protein extracts were then analyzed by Western blotting using VEGF-R2 (R2 tot) and phospho-VEGFR2 (P-R2) specific antibodies (c, d). Calculated P-R2/R2 ratio of in PAEC-R2 (c) and PAEC-R2-NRP1 (d). HUVECs proliferation was measured by WST-1 assay in absence of VEGF, in the presence of VEGF111a, in the presence of VEGF165a (250 pM), or in the presence of both VEGF165a (250 pM) and R8R (300 μM) (e). Only statistics related to the effects of R8R are reported. **p < 0.01, ***p < 0.001 (unpaired t test) (TIFF 9482 kb)

10456_2012_9320_MOESM6_ESM.tif

Supplemental Fig. 6 Quantification of the effects of VEGF variants in tumour angiogenesis using HEK293 cells expressing the various VEGF isoforms. Two millions HEK293 cells, either control or overexpressing VEGF variants were mixed with Matrigel and injected in the flank of nude mice. (a) The VEGF mRNA levels (upper panel) were measured by RT-PCR using primers P1 and P2 (see Table 1) that enable the amplification of all the VEGF variants with production of a single amplicon. The 28S rRNA was measured in parallel to normalize the quantities of RNA input in the reactions. * indicate the amplicon formed from an internal standard co-amplified with 28S rRNA to take into account potential variations of the PCR efficiency. Ratios of the CD31 stained surfaces in the tumour (b) or the adjacent skin (c) were quantified. * p < 0.05, ** p < 0.01, *** p < 0.001 (unpaired t test) (TIFF 27515 kb)

10456_2012_9320_MOESM7_ESM.tif

Supplemental Fig. 7 Immunolocalization of VEGF in tumours expressing the various VEGF isoforms. (a-i) VEGF immunostaining on paraffin sections showing the tumours; scale bar = 100 μm (TIFF 38925 kb)

10456_2012_9320_MOESM8_ESM.tif

Supplemental Fig. 8 Effects on tumour angiogenesis of co-expressing VEGF 165 a and VEGF 165 b. Two millions HEK293 cells were mixed with Matrigel and injected in the flank of nude mice. In addition to control cells, two ratio of HEK293 cells expressing VEGF165a and VEGF165b were evaluated, either 1 × 106 each (165a + 165b) or 4 × 105 expressing VEGF165a and 1.6 × 106 expressing VEGF165b (165a + 4x165b). See Fig 6 for comparison with cells expressing only VEGF165a or VEGF165b. (a) Macroscopic view of the tumours obtained in each group. Control (n = 5), 165a + 165b (n = 4), 165a + 4x165b (n = 5). (b) CD31 immunostaining on paraffin sections showing the tumour (T) and the adjacent skin (S) at two levels of magnification (scale bar = 100 μm). Black lined rectangles delineate the areas of the sections represented in (c) at higher magnification (scale bar = 25 μm) (TIFF 30269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delcombel, R., Janssen, L., Vassy, R. et al. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 16, 353–371 (2013). https://doi.org/10.1007/s10456-012-9320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9320-y

Keywords

Navigation