Skip to main content

PET/SPECT imaging of hindlimb ischemia: focusing on angiogenesis and blood flow

Abstract

Peripheral artery disease (PAD) is a result of the atherosclerotic narrowing of blood vessels to the extremities, and the subsequent tissue ischemia can lead to the up-regulation of angiogenic growth factors and formation of new vessels as a recovery mechanism. Such formation of new vessels can be evaluated with various non-invasive molecular imaging techniques, where serial images from the same subjects can be obtained to allow the documentation of disease progression and therapeutic response. The most commonly used animal model for preclinical studies of PAD is the murine hindlimb ischemia model, and a number of radiotracers have been investigated for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of PAD. In this review article, we summarize the PET/SPECT tracers that have been tested in the murine hindlimb ischemia model as well as those used clinically to assess the extremity blood flow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sumner AD, Khalil YK, Reed JF 3rd (2012) The relationship of peripheral arterial disease and metabolic syndrome prevalence in asymptomatic US adults 40 years and older: results from the National Health and Nutrition Examination Survey (1999–2004). J Clin Hypertens (Greenwich) 14:144–148

    Article  CAS  Google Scholar 

  2. van Weel V, van Tongeren RB, van Hinsbergh VW, van Bockel JH, Quax PH (2008) Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann Vasc Surg 22:582–597

    PubMed  Article  Google Scholar 

  3. Clair D, Shah S, Weber J (2012) Current state of diagnosis and management of critical limb ischemia. Curr Cardiol Rep 14:160–170

    PubMed  Article  Google Scholar 

  4. Hinchliffe RJ, Andros G, Apelqvist J, Bakker K, Friederichs S, Lammer J et al (2012) A systematic review of the effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral arterial disease. Diabetes Metab Res Rev 28(Suppl 1):179–217

    PubMed  Article  Google Scholar 

  5. Ouriel K (2001) Peripheral arterial disease. Lancet 358:1257–1264

    PubMed  Article  CAS  Google Scholar 

  6. Andersen CA (2010) Noninvasive assessment of lower extremity hemodynamics in individuals with diabetes mellitus. J Vasc Surg 52:76S–80S

    PubMed  Article  Google Scholar 

  7. Mathieu D, Mani R (2007) A review of the clinical significance of tissue hypoxia measurements in lower extremity wound management. Int J Low Extrem Wounds 6:273–283

    PubMed  Article  Google Scholar 

  8. Tang GL, Chin J, Kibbe MR (2010) Advances in diagnostic imaging for peripheral arterial disease. Expert Rev Cardiovasc Ther 8:1447–1455

    PubMed  Article  Google Scholar 

  9. Galbraith JE, Murphy ML, de Soyza N (1978) Coronary angiogram interpretation. Interobserver variability. JAMA 240:2053–2056

    PubMed  Article  CAS  Google Scholar 

  10. Leape LL, Park RE, Bashore TM, Harrison JK, Davidson CJ, Brook RH (2000) Effect of variability in the interpretation of coronary angiograms on the appropriateness of use of coronary revascularization procedures. Am Heart J 139:106–113

    PubMed  Article  CAS  Google Scholar 

  11. Cavalcanti Filho JL, de Souza Leao Lima R, de Souza Machado Neto L, Kayat Bittencourt L, Domingues RC, da Fonseca LM (2011) PET/CT and vascular disease: current concepts. Eur J Radiol 80:60–67

    PubMed  Article  Google Scholar 

  12. Dobrucki LW, Sinusas AJ (2007) Imaging angiogenesis. Curr Opin Biotechnol 18:90–96

    PubMed  Article  CAS  Google Scholar 

  13. Suh JW, Scheinost D, Dione DP, Dobrucki LW, Sinusas AJ, Papademetris X (2011) A non-rigid registration method for serial lower extremity hybrid SPECT/CT imaging. Med Image Anal 15:96–111

    PubMed  Article  Google Scholar 

  14. Cai W, Chen X (2007) Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 12:4267–4279

    PubMed  Article  CAS  Google Scholar 

  15. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S

    PubMed  Article  CAS  Google Scholar 

  16. Waters RE, Terjung RL, Peters KG, Annex BH (2004) Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J Appl Physiol 97:773–780

    PubMed  Article  CAS  Google Scholar 

  17. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    PubMed  CAS  Google Scholar 

  18. Niiyama H, Huang NF, Rollins MD, Cooke JP (2009) Murine model of hindlimb ischemia. J Vis Exp 23:1035. doi:10.3791/1035

    Google Scholar 

  19. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    PubMed  Article  CAS  Google Scholar 

  20. Ubbink DT, Tulevski II, den Hartog D, Koelemay MJ, Legemate DA, Jacobs MJ (1997) The value of non-invasive techniques for the assessment of critical limb ischaemia. Eur J Vasc Endovasc Surg 13:296–300

    PubMed  Article  CAS  Google Scholar 

  21. Alauddin MM (2012) Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging 2:55–76

    PubMed  CAS  Google Scholar 

  22. Vach W, Høilund-Carlsen PF, Fischer BM, Gerke O, Weber W (2011) How to study optimal timing of PET/CT for monitoring of cancer treatment. Am J Nucl Med Mol Imaging 1:54–62

    PubMed  Google Scholar 

  23. Zeman MN, Scott PJH (2012) Current imaging strategies in rheumatoid arthritis. Am J Nucl Med Mol Imaging 2:174–220

    PubMed  Google Scholar 

  24. Bhargava P, He G, Samarghandi A, Delpassand ES (2012) Pictorial review of SPECT/CT imaging applications in clinical nuclear medicine. Am J Nucl Med Mol Imaging 2:221–231

    PubMed  Google Scholar 

  25. Ogasawara Y, Ogasawara K, Suzuki T, Yamashita T, Kuroda H, Chida K et al (2012) Preoperative 123I-iomazenil SPECT imaging predicts cerebral hyperperfusion following endarterectomy for unilateral cervical internal carotid artery stenosis. Am J Nucl Med Mol Imaging 2:77–87

    PubMed  CAS  Google Scholar 

  26. Stacy MR, Maxfield MW, Sinusas AJ (2012) Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med 85:75–86

    PubMed  Google Scholar 

  27. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  28. Aparici CM, Carlson D, Nguyen N, Hawkins RA, Seo Y (2012) Combined SPECT and multidetector CT for prostate cancer evaluations. Am J Nucl Med Mol Imaging 2:48–54

    PubMed  CAS  Google Scholar 

  29. Eary JF, Hawkins DS, Rodler ET, Conrad EUI (2011) 18F-FDG PET in sarcoma treatment response imaging. Am J Nucl Med Mol Imaging 1:47–53

    PubMed  Google Scholar 

  30. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    PubMed  Article  CAS  Google Scholar 

  31. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P et al (2012) The clinical use of PET with 11C-acetate. Am J Nucl Med Mol Imaging 2:33–47

    PubMed  CAS  Google Scholar 

  32. Zhao R, Wang J, Deng J, Yang W, Wang J (2012) Efficacy of 99mTc-EDDA/HYNIC-TOC SPECT/CT scintigraphy in Graves’ ophthalmopathy. Am J Nucl Med Mol Imaging 2:242–247

    PubMed  CAS  Google Scholar 

  33. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 5:2624–2633

    PubMed  Article  CAS  Google Scholar 

  34. Hao G, Hajibeigi A, De León-Rodríguez LM, Öz OK, Sun X (2011) Peptoid-based PET imaging of vascular endothelial growth factor receptor (VEGFR) expression. Am J Nucl Med Mol Imaging 1:65–75

    PubMed  CAS  Google Scholar 

  35. Wang RE, Niu Y, Wu H, Amin MN, Cai J (2011) Development of NGR peptide-based agents for tumor imaging. Am J Nucl Med Mol Imaging 1:36–46

    PubMed  CAS  Google Scholar 

  36. Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W (2012) Positron emission tomography and near-infrared fluorescence imaging of vascular endothelial growth factor with dual-labeled bevacizumab. Am J Nucl Med Mol Imaging 2:1–13

    PubMed  CAS  Google Scholar 

  37. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    PubMed  Article  CAS  Google Scholar 

  38. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    PubMed  Article  CAS  Google Scholar 

  39. Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973

    PubMed  Article  CAS  Google Scholar 

  40. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B et al (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106:685–690

    PubMed  Article  CAS  Google Scholar 

  41. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836

    PubMed  Article  CAS  Google Scholar 

  42. Potter LR, Hunter T (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276:6057–6060

    PubMed  Article  CAS  Google Scholar 

  43. van den Akker F (2001) Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J Mol Biol 311:923–937

    PubMed  Article  Google Scholar 

  44. Liu Y, Pressly ED, Abendschein DR, Hawker CJ, Woodard GE, Woodard PK et al (2011) Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med 52:1956–1963

    PubMed  Article  CAS  Google Scholar 

  45. Cai W, Hong H (2011) Peptoid and positron emission tomography: an appealing combination. Am J Nucl Med Mol Imaging 1:76–79

    PubMed  CAS  Google Scholar 

  46. Willmann JK, Chen K, Wang H, Paulmurugan R, Rollins M, Cai W et al (2008) Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 117:915–922

    PubMed  Article  CAS  Google Scholar 

  47. Penuelas I, Aranguren XL, Abizanda G, Marti-Climent JM, Uriz M, Ecay M et al (2007) 13N-ammonia PET as a measurement of hindlimb perfusion in a mouse model of peripheral artery occlusive disease. J Nucl Med 48:1216–1223

    PubMed  Article  CAS  Google Scholar 

  48. Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P et al (2005) Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111:3255–3260

    PubMed  Article  CAS  Google Scholar 

  49. Dobrucki LW, Dione DP, Kalinowski L, Dione D, Mendizabal M, Yu J et al (2009) Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med 50:1356–1363

    PubMed  Article  Google Scholar 

  50. Depairon M, De Landsheere C, Merlo P, Del Fiore G, Quaglia L, Peters JM et al (1988) Effect of exercise on the leg distribution of C15O2 and 15O2 in normals and in patients with peripheral ischemia: a study using positron tomography. Int Angiol 7:254–257

    PubMed  CAS  Google Scholar 

  51. Depairon M, Depresseux JC, De Landsheere C, Merlo P, Del Fiore G, Quaglia L et al (1988) Regional blood flow and oxygen consumption in the leg muscles of normal subjects and in those with arterial insufficiency. Study of the distribution of C15O2 and of 15O2 using positron emission tomography. J Mal Vasc 13:107–115

    PubMed  CAS  Google Scholar 

  52. Keenan GF, Ashcroft GP, Roditi GH, Hutchison JD, Evans NT, Mikecz P et al (1995) Measurement of lower limb blood flow in patients with neurogenic claudication using positron emission tomography. Spine (Phila Pa 1976) 20:408–411

    Article  CAS  Google Scholar 

  53. Scremin OU, Figoni SF, Norman K, Scremin AM, Kunkel CF, Opava-Rutter D et al (2010) Preamputation evaluation of lower-limb skeletal muscle perfusion with H 152 O positron emission tomography. Am J Phys Med Rehabil 89:473–486

    PubMed  Article  Google Scholar 

  54. Nawaz A, Saboury B, Basu S, Zhuang H, Moghadam-Kia S, Werner T et al (2012) Relation between popliteal-tibial artery atherosclerosis and global glycolytic metabolism in the affected diabetic foot: a pilot study using quantitative FDG-PET. J Am Podiatr Med Assoc 102:240–246

    PubMed  Google Scholar 

  55. Nolting DD, Nickels ML, Guo N, Pham W (2012) Molecular imaging probe development: a chemistry perspective. Am J Nucl Med Mol Imaging 2:273–306

    PubMed  Google Scholar 

  56. Beller GA, Sinusas AJ (1990) Experimental studies of the physiologic properties of technetium-99m isonitriles. Am J Cardiol 66:5E–8E

    PubMed  Article  CAS  Google Scholar 

  57. Bostrom PA, Diemer H, Leide S, Lilja B, Bergqvist D (1993) 99mTc-sestamibi uptake in the leg muscles and in the myocardium in patients with intermittent claudication. Angiology 44:971–976

    PubMed  Article  CAS  Google Scholar 

  58. Hamanaka D, Odori T, Maeda H, Ishii Y, Hayakawa K, Torizuka K (1984) A quantitative assessment of scintigraphy of the legs using 201Tl. Eur J Nucl Med 9:12–16

    PubMed  Article  CAS  Google Scholar 

  59. Kusmierek J, Dabrowski J, Bienkiewicz M, Szuminski R, Plachcinska A (2006) Radionuclide assessment of lower limb perfusion using 99mTc-MIBI in early stages of atherosclerosis. Nucl Med Rev Cent East Eur 9:18–23

    PubMed  Google Scholar 

  60. Miles KA, Barber RW, Wraight EP, Cooper M, Appleton DS (1992) Leg muscle scintigraphy with 99mTc-MIBI in the assessment of peripheral vascular (arterial) disease. Nucl Med Commun 13:593–603

    PubMed  CAS  Google Scholar 

  61. Forrest I, Hayes G, Smith A, Yip TC, Walker PM (1989) Identification of clinically significant skeletal muscle necrosis by single photon emission computed tomography. Can J Surg 32:109–112

    PubMed  CAS  Google Scholar 

  62. Yip TC, Houle S, Tittley JG, Walker PM (1992) Quantification of skeletal muscle necrosis in the lower extremities using 99mTc pyrophosphate with single photon emission computed tomography. Nucl Med Commun 13:47–52

    PubMed  Article  CAS  Google Scholar 

  63. Bajnok L, Kozlovszky B, Varga J, Antalffy J, Olvaszto S, Fulop T Jr (1994) Technetium-99m sestamibi scintigraphy for the assessment of lower extremity ischaemia in peripheral arterial disease. Eur J Nucl Med 21:1326–1332

    PubMed  Article  CAS  Google Scholar 

  64. Dobrucki LW, Sinusas AJ (2010) PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 7:38–47

    PubMed  Article  Google Scholar 

  65. Wu AM (2009) Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 50:2–5

    PubMed  Article  CAS  Google Scholar 

  66. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    PubMed  Article  CAS  Google Scholar 

  67. Zhang Y, Hong H, Engle JW, Yang Y, Theuer CP, Barnhart TE et al (2012) Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol Pharm 9:645–653

    PubMed  Article  CAS  Google Scholar 

  68. Hong H, Severin GW, Yang Y, Engle JW, Zhang Y, Barnhart TE et al (2012) Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur J Nucl Med Mol Imaging 39:138–148

    PubMed  Article  CAS  Google Scholar 

  69. Zhang Y, Hong H, Engle JW, Bean J, Yang Y, Leigh BR et al (2011) Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One 6:e28005

    PubMed  Article  CAS  Google Scholar 

  70. Engle JW, Hong H, Zhang Y, Valdovinos HF, Myklejord DV, Barnhart TE et al (2012) Positron emission tomography imaging of tumor angiogenesis with a 66Ga-labeled monoclonal antibody. Mol Pharm 9:1441–1448

    PubMed  Article  CAS  Google Scholar 

  71. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ et al (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937

    PubMed  Article  CAS  Google Scholar 

  72. Zhang Y, Yang Y, Hong H, Cai W (2011) Multimodality molecular imaging of CD105 (Endoglin) expression. Int J Clin Exp Med 4:32–42

    PubMed  Google Scholar 

  73. Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M et al (2006) Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol 26:520–526

    PubMed  Article  CAS  Google Scholar 

  74. Tirziu D, Moodie KL, Zhuang ZW, Singer K, Helisch A, Dunn JF et al (2005) Delayed arteriogenesis in hypercholesterolemic mice. Circulation 112:2501–2509

    PubMed  Article  CAS  Google Scholar 

  75. Saucy F, Dischl B, Delachaux A, Feihl F, Liaudet L, Waeber B et al (2006) Foot skin blood flow following infrainguinal revascularization for critical lower limb ischemia. Eur J Vasc Endovasc Surg 31:401–406

    PubMed  Article  CAS  Google Scholar 

  76. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the University of Wisconsin Carbone Cancer Center, the Department of Defense (W81XWH-11-1-0644), and the Elsa U. Pardee Foundation.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibo Cai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orbay, H., Hong, H., Zhang, Y. et al. PET/SPECT imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis 16, 279–287 (2013). https://doi.org/10.1007/s10456-012-9319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9319-4

Keywords

  • Hindlimb ischemia
  • Peripheral artery disease (PAD)
  • Angiogenesis
  • Positron emission tomography (PET)
  • Single photon emission computed tomography (SPECT)
  • Molecular imaging