Skip to main content
Log in

BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for hereditary hemorrhagic telangiectasia type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations. Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1—restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. HHT Foundation International website (2011)

  2. Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24(6):203–219

    Article  PubMed  CAS  Google Scholar 

  3. Govani FS, Shovlin CL (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17(7):860–871. PMCID: 2986493

    Google Scholar 

  4. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195

    Article  PubMed  CAS  Google Scholar 

  5. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351

    Article  PubMed  CAS  Google Scholar 

  6. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    Article  PubMed  CAS  Google Scholar 

  7. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584

    Article  PubMed  CAS  Google Scholar 

  8. Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW et al (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119(11):3487–3496. PMCID: 2769195

    Google Scholar 

  9. Bonyadi M, Rusholme SA, Cousins FM, Su HC, Biron CA, Farrall M et al (1997) Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 15(2):207–211

    Article  PubMed  CAS  Google Scholar 

  10. Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M (2001) Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am J Pathol 158(6):2011–2020. PMCID: 1891990

    Google Scholar 

  11. Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93(7):682–689

    Article  PubMed  CAS  Google Scholar 

  12. David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212

    Article  PubMed  CAS  Google Scholar 

  13. David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102(8):914–922

    Article  PubMed  CAS  Google Scholar 

  14. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961

    Article  PubMed  CAS  Google Scholar 

  15. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652

    Article  PubMed  CAS  Google Scholar 

  16. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118

    Article  PubMed  CAS  Google Scholar 

  17. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567

    Article  PubMed  CAS  Google Scholar 

  18. Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z et al (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111(2):633–642. PMCID: 2200847

    Google Scholar 

  19. Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest A J Tech Methods Pathol 86(2):116–129

    Article  CAS  Google Scholar 

  20. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753

    Article  PubMed  CAS  Google Scholar 

  21. Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501

    Article  PubMed  CAS  Google Scholar 

  22. Lux A, Salway F, Dressman HK, Kroner-Lux G, Hafner M, Day PJ et al (2006) ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-beta and constitutively active receptor induced gene expression. BMC Cardiovasc Disord 6:13

    Article  PubMed  Google Scholar 

  23. Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 24(11):2420–2427

    Article  PubMed  CAS  Google Scholar 

  24. Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H et al (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318

    Article  PubMed  CAS  Google Scholar 

  25. Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13(7):301–307

    Article  PubMed  CAS  Google Scholar 

  26. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Nat Acad Sci USA 97(6):2626–2631

    Article  PubMed  CAS  Google Scholar 

  27. Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC et al (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019

    PubMed  CAS  Google Scholar 

  28. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972

    Article  PubMed  CAS  Google Scholar 

  29. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331

    Article  PubMed  CAS  Google Scholar 

  30. Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284(23):15794–15804. PMCID: 2708876

    Google Scholar 

  31. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160

    Article  PubMed  CAS  Google Scholar 

  32. Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G et al (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230(2):139–150

    Article  PubMed  CAS  Google Scholar 

  33. Krebs LT, Starling C, Chervonsky AV, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis 48(3):146–150. PMCID: 2849749

    Google Scholar 

  34. Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD (2010) Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J Cell Sci 123(Pt 8):1235–1246. PMCID: 2848112

    Google Scholar 

  35. Heroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S et al (2010) EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinb2. Mol Cancer Res MCR 8(10):1297–1309

    Article  CAS  Google Scholar 

  36. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486

    Article  PubMed  CAS  Google Scholar 

  38. Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1 small star, filled. Microvasc Res 66(2):102–112

    Article  PubMed  CAS  Google Scholar 

  39. Kim JH, Zhao Y, Pan X, He X, Gilbert HF (2009) The unfolded protein response is necessary but not sufficient to compensate for defects in disulfide isomerization. J Biol Chem 284(16):10400–10408. PMCID: 2667727

    Google Scholar 

  40. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts [see comments]. Nature 401(6754):670–677

    Article  PubMed  CAS  Google Scholar 

  41. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029

    PubMed  CAS  Google Scholar 

  42. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800. PMCID: 3192859

    Google Scholar 

  43. David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489

    Article  PubMed  CAS  Google Scholar 

  44. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306

    Article  PubMed  CAS  Google Scholar 

  45. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed  CAS  Google Scholar 

  46. Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC (2001) The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem 276(9):6169–6176

    Article  PubMed  CAS  Google Scholar 

  47. Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun 346(3):637–648

    Article  PubMed  CAS  Google Scholar 

  48. Taylor KL, Henderson AM, Hughes CC (2002) Notch Activation during Endothelial Cell Network Formation in Vitro Targets the Basic HLH Transcription Factor HESR-1 and Downregulates VEGFR-2/KDR Expression. Microvasc Res 64(3):372–383

    Article  PubMed  CAS  Google Scholar 

  49. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci 102(28):9884–9889. PMCID: 1175015

    Google Scholar 

  50. Leblanc GG, Golanov E, Awad IA, Young WL (2009) Biology of vascular malformations of the brain. Stroke 40(12):e694–e702. PMCID: 2810509

    Google Scholar 

  51. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588

    Article  PubMed  CAS  Google Scholar 

  52. ZhuGe Q, Zhong M, Zheng W, Yang GY, Mao X, Xie L et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132(Pt 12):3231–3241. PMCID: 2792368

    Google Scholar 

  53. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221

    Article  PubMed  CAS  Google Scholar 

  54. Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12 Spec No 1:R97–R112

    Google Scholar 

  55. Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH et al (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39(20):8712–8727. PMCID: 3203580

    Google Scholar 

  56. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K et al (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8):1573–1582. PMCID: 3062425

    Google Scholar 

  57. Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692

    Article  PubMed  CAS  Google Scholar 

  58. Davidson TM, Olitsky SE, Wei JL (2010) Hereditary hemorrhagic telangiectasia/avastin. The Laryngoscope 120(2):432–435

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the HHT Foundation International (CCWH) and an NIH R01 Award (HL60067–CCWH), and an NIH RC1 Award (ES018361–SCG). We thank Dr. Paul Oh for the kind gift of Alk1 plasmids. We thank Linda Him and Matt Peacock for outstanding help with tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. W. Hughes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2012_9277_MOESM1_ESM.tiff

Fig. S1 ECFC-EC have a phenotype between HUAEC and HUVEC HUAEC, ECFC-EC and HUVEC were grown under identical conditions and then harvested for analysis of artery (EphrinB2) and vein (EphB4, COUP-TFII) markers by qRT-PCR (TIFF 2703 kb)

10456_2012_9277_MOESM2_ESM.tiff

Fig. S2 Alk1 and notch independently regulate angiogenic sprouting A. HUAEC were transfected with expression plasmids for CA-Alk1 or control, established in a sprouting assay and treated with vehicle or 3 μM DAPT. Sprouting was assessed after 5 days by counting tip cells. B. HUAEC were transfected with siRNA to Alk1 or control, and a day later transfected with an expression plasmid encoding dll4, or with a control plasmid. Cells were then seeded in a sprouting assay and sprouts/bead assessed at day 5. (TIFF 2703 kb)

10456_2012_9277_MOESM3_ESM.tiff

Fig. S3 BMP9 suppresses sprouting induced by a loss of notch signaling A. HUAEC were established in a sprouting assay and treated with DAPT and/or BMP9 as indicated. Sprouting was assessed after 5 days by counting tip cells (TIFF 2703 kb)

10456_2012_9277_MOESM4_ESM.tiff

Fig. S4 Multiple BMP response elements in the EphrinB2 promoter Approximately 1 kb of the human EphrinB2 promoter (-900 to +100 bp) was analyzed. The RBPj site is shown in purple, the nine BMP-response elements in green, and the transcription start site is indicated in yellow (TIFF 2703 kb)

10456_2012_9277_MOESM5_ESM.tiff

Fig. S5 At least one conserved BMP response element in the EphrinB2 promoter in multiple species Overlapping regions of the EphrinB2 promoter were aligned from multiple species. At least one site was well conserved between them all – 6/6 residues conserved between human, chimpanzee, chicken and zebrafish, and 5/6 conserved with mouse (TIFF 2703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Peacock, M.R., George, S.C. et al. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 15, 497–509 (2012). https://doi.org/10.1007/s10456-012-9277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9277-x

Keywords

Navigation