, Volume 15, Issue 3, pp 409–420 | Cite as

Inhibition of ARNT severely compromises endothelial cell viability and function in response to moderate hypoxia

  • Yu Han
  • Ke Yang
  • Aaron Proweller
  • Guangjin Zhou
  • Mukesh K. Jain
  • Diana L. Ramirez-BergeronEmail author
Original Paper


Hypoxia inducible factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O2) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic conditions by using a genetic model in which the required HIF-β subunit (ARNT, Aryl hydrocarbon Receptor Nuclear Translocator) to HIF transcriptional responses was depleted. Endothelial cells (ECs) and aortic explants were isolated from Arnt loxP/loxP mice and infected with Adenovirus-Cre/GFP or control-GFP. We observed that moderate levels of 2.5 % O2 promoted vessel sprouting, growth, and branching in control aortic ring assays while growth from Adenovirus-Cre infected explants was compromised. Primary Adenovirus-Cre infected EC cultures featured adverse migration and tube formation phenotypes. Primary pulmonary or cardiac ARNT-deleted ECs also failed to proliferate and survive in response to 8 or 2.5 % O2 and hydrogen peroxide treatment. Our data demonstrates that ARNT promotes EC migration and vessel outgrowth and is indispensible for the proliferation and preservation of ECs in response to the physiological environmental cue of hypoxia. Thus, these results demonstrate that ARNT plays a critical intrinsic role in ECs and support an important collaboration between HIF-1 and HIF-2 transcriptional activity in these cells.


Angiogenesis ARNT HIF Physiological hypoxia Endothelium 



We thank Alla Gomer for her technical assistance. This work was supported by the National Heart, Lung, and Blood Institute R01-HL096597 (D. R. B) and R01-HL096603 (A. P.).

Supplementary material

10456_2012_9269_MOESM1_ESM.eps (9.5 mb)
Supplementary material 1 (EPS 9691 kb)
10456_2012_9269_MOESM2_ESM.eps (428 kb)
Supplementary material 2 (EPS 428 kb)
10456_2012_9269_MOESM3_ESM.eps (4.4 mb)
Supplementary material 3 (EPS 4457 kb)
10456_2012_9269_MOESM4_ESM.eps (11.1 mb)
Supplementary material 4 (EPS 11317 kb)


  1. 1.
    Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW, Kaelin WG Jr (1998) Regulation of hypoxia-inducible mrnas by the von hippel-lindau tumor suppressor protein requires binding to complexes containing elongins b/c and cul2. Mol Cell Biol 18(2):732–741PubMedGoogle Scholar
  2. 2.
    Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von hippel-lindau tumor suppressor protein. J Biol Chem 275(33):25733–25741PubMedCrossRefGoogle Scholar
  3. 3.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans egl-9 and mammalian homologs define a family of dioxygenases that regulate hif by prolyl hydroxylation. Cell 107(1):43–54PubMedCrossRefGoogle Scholar
  4. 4.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-pas heterodimer regulated by cellular o2 tension. Proc Natl Acad Sci USA 92(12):5510–5514PubMedCrossRefGoogle Scholar
  5. 5.
    Ramirez-Bergeron DL, Runge A, Adelman DM, Gohil M, Simon MC (2006) Hif-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell 11(1):81–92PubMedCrossRefGoogle Scholar
  6. 6.
    Patel SA, Simon MC (2008) Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ 15(4):628–634PubMedCrossRefGoogle Scholar
  7. 7.
    Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL (2003) Predominant role of hypoxia-inducible transcription factor (hif)-1alpha versus hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res 63(19):6130–6134PubMedGoogle Scholar
  8. 8.
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by hif-1. Blood 105(2):659–669PubMedCrossRefGoogle Scholar
  9. 9.
    Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673PubMedCrossRefGoogle Scholar
  10. 10.
    Nagao K, Oka K (2011) Hif-2 directly activates cd82 gene expression in endothelial cells. Biochem Biophys Res Commun 407(1):260–265PubMedCrossRefGoogle Scholar
  11. 11.
    Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (hif-1alpha) and hif-2alpha in stem cells. Mol Cell Biol 26(9):3514–3526PubMedCrossRefGoogle Scholar
  12. 12.
    Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B, Simon MC, Nathanson KL (2008) Hif-alpha effects on c-myc distinguish two subtypes of sporadic vhl-deficient clear cell renal carcinoma. Cancer Cell 14(6):435–446PubMedCrossRefGoogle Scholar
  13. 13.
    Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS (2003) Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (hif-1alpha): Role of cytoplasmic trapping of hif-2alpha. Mol Cell Biol 23(14):4959–4971PubMedCrossRefGoogle Scholar
  14. 14.
    Holmquist L, Jogi A, Pahlman S (2005) Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 116(2):218–225PubMedCrossRefGoogle Scholar
  15. 15.
    Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324(5932):1289–1293PubMedCrossRefGoogle Scholar
  16. 16.
    Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bhlh-pas factor with close sequence similarity to hypoxia- inducible factor 1alpha regulates the vegf expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94(9):4273–4278PubMedCrossRefGoogle Scholar
  17. 17.
    Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) Hrf, a putative basic helix-loop-helix-pas-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63(1):51–60PubMedCrossRefGoogle Scholar
  18. 18.
    Tian H, McKnight SL, Russell DW (1997) Endothelial pas domain protein 1 (epas1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82PubMedCrossRefGoogle Scholar
  19. 19.
    Compernolle V, Brusselmans K, Franco D, Moorman A, Dewerchin M, Collen D, Carmeliet P (2003) Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res 60(3):569–579PubMedCrossRefGoogle Scholar
  20. 20.
    Wiesener M, Turley H, Allen W, William C, Eckardt K, Talks K, Wood S, Gatter K, Harris A, Pugh C, Ratcliffe P, Maxwell P (1998) Induction of endothelial pas domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268PubMedGoogle Scholar
  21. 21.
    Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU (2003) Widespread hypoxia-inducible expression of hif-2alpha in distinct cell populations of different organs. FASEB J 17(2):271–273PubMedGoogle Scholar
  22. 22.
    Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS (2004) Loss of hif-1alpha in endothelial cells disrupts a hypoxia-driven vegf autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495PubMedCrossRefGoogle Scholar
  23. 23.
    Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, Iruela-Arispe L, Simon MC, Keith B (2009) Endothelial deletion of hypoxia-inducible factor-2alpha (hif-2alpha) alters vascular function and tumor angiogenesis. Blood 114(2):469–477PubMedCrossRefGoogle Scholar
  24. 24.
    Yim SH, Shah Y, Tomita S, Morris HD, Gavrilova O, Lambert G, Ward JM, Gonzalez FJ (2006) Disruption of the arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice. Hepatology 44(3):550–560PubMedCrossRefGoogle Scholar
  25. 25.
    Sobczak M, Dargatz J, Chrzanowska-Wodnicka M (2010) Isolation and culture of pulmonary endothelial cells from neonatal mice. J Vis Exp 46. Accessed 24 Dec 2010. Available from:
  26. 26.
    Tomita S, Sinal CJ, Yim SH, Gonzalez FJ (2000) Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha. Mol Endocrinol 14(10):1674–1681PubMedCrossRefGoogle Scholar
  27. 27.
    Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the ve-cadherin gene in mice impairs vegf-mediated endothelial survival and angiogenesis. Cell 98(2):147–157PubMedCrossRefGoogle Scholar
  28. 28.
    Yang K, Proweller A (2011) Vascular smooth muscle notch signals regulate endothelial cell sensitivity to angiogenic stimulation. J Biol Chem 286(15):13741–13753PubMedCrossRefGoogle Scholar
  29. 29.
    Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L, Brunk UT (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci USA 99(9):6286–6291PubMedCrossRefGoogle Scholar
  30. 30.
    Folkman J (1984) What is the role of endothelial cells in angiogenesis? Lab Invest 51(6):601–604PubMedGoogle Scholar
  31. 31.
    Hoffstein V, Duguid N, Zamel N, Rebuck AS (1984) Estimation of changes in alveolar-arterial oxygen gradient induced by hypoxia. J Lab Clin Med 104(5):685–692PubMedGoogle Scholar
  32. 32.
    Whalen WJ, Savoca J, Nair P (1973) Oxygen tension measurements in carotid body of the cat. Am J Physiol 225(4):986–991PubMedGoogle Scholar
  33. 33.
    Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68(1):26–36PubMedCrossRefGoogle Scholar
  34. 34.
    Lee KY, Gesta S, Boucher J, Wang XL, Kahn CR (2011) The differential role of hif1beta/arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab 14(4):491–503PubMedCrossRefGoogle Scholar
  35. 35.
    Wondimu A, Weir L, Robertson D, Mezentsev A, Kalachikov S, Panteleyev AA (2011) Loss of arnt (hif1beta) in mouse epidermis triggers dermal angiogenesis, blood vessel dilation and clotting defects. Lab Invest 92(1):110–124PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ (2011) Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60(10):2484–2495PubMedCrossRefGoogle Scholar
  37. 37.
    Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA (2011) Aryl hydrocarbon receptor deficiency enhances insulin sensitivity and reduces ppar-alpha pathway activity in mice. Environ Health Perspect 119(12):1739–1744PubMedCrossRefGoogle Scholar
  38. 38.
    Wang XL, Suzuki R, Lee K, Tran T, Gunton JE, Saha AK, Patti ME, Goldfine A, Ruderman NB, Gonzalez FJ, Kahn CR (2009) Ablation of arnt/hif1beta in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab 9(5):428–439PubMedCrossRefGoogle Scholar
  39. 39.
    Geng S, Mezentsev A, Kalachikov S, Raith K, Roop DR, Panteleyev AA (2006) Targeted ablation of arnt in mouse epidermis results in profound defects in desquamation and epidermal barrier function. J Cell Sci 119(Pt 23):4901–4912PubMedCrossRefGoogle Scholar
  40. 40.
    Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O’Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of arnt/hif1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122(3):337–349PubMedCrossRefGoogle Scholar
  41. 41.
    Tomita S, Jiang HB, Ueno T, Takagi S, Tohi K, Maekawa S, Miyatake A, Furukawa A, Gonzalez FJ, Takeda J, Ichikawa Y, Takahama Y (2003) T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution. J Immunol 171(8):4113–4120PubMedGoogle Scholar
  42. 42.
    Licht AH, Muller-Holtkamp F, Flamme I, Breier G (2006) Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107(2):584–590PubMedCrossRefGoogle Scholar
  43. 43.
    Han Y, Kuang SZ, Gomer A, Ramirez-Bergeron DL (2010) Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an arnt-dependent manner. Stem Cells 28(4):799–809PubMedCrossRefGoogle Scholar
  44. 44.
    Ben-Shoshan J, Maysel-Auslender S, Luboshits G, Barshack I, Polak-Charcon S, Tzahor E, Keren G, George J (2009) Hypoxia-inducible factor-1alpha and -2alpha additively promote endothelial vasculogenic properties. J Vasc Res 46(4):299–310PubMedCrossRefGoogle Scholar
  45. 45.
    Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, Candinas D (2001) Hif-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15(13):2445–2453PubMedGoogle Scholar
  46. 46.
    Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR (2009) Intermittent hypoxia degrades hif-2alpha via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci USA 106(4):1199–1204PubMedCrossRefGoogle Scholar
  47. 47.
    Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (hif)-1alpha and hif-2alpha expression in lung epithelial cells: implication of natural antisense hif-1alpha. J Biol Chem 279(15):14871–14878PubMedCrossRefGoogle Scholar
  48. 48.
    Fong GH (2009) Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med 87(6):549–560PubMedCrossRefGoogle Scholar
  49. 49.
    Rivera CG, Mellberg S, Claesson-Welsh L, Bader JS, Popel AS (2011) Analysis of vegf-a regulated gene expression in endothelial cells to identify genes linked to angiogenesis. PLoS ONE 6(9):e24887PubMedCrossRefGoogle Scholar
  50. 50.
    Deudero JJ, Caramelo C, Castellanos MC, Neria F, Fernandez-Sanchez R, Calabia O, Penate S, Gonzalez-Pacheco FR (2008) Induction of hypoxia-inducible factor 1alpha gene expression by vascular endothelial growth factor. J Biol Chem 283(17):11435–11444PubMedCrossRefGoogle Scholar
  51. 51.
    Chae KS, Kang MJ, Lee JH, Ryu BK, Lee MG, Her NG, Ha TK, Han J, Kim YK, Chi SG (2010) Opposite functions of hif-alpha isoforms in vegf induction by tgf-beta1 under non-hypoxic conditions. Oncogene 30(10):1213–1228PubMedCrossRefGoogle Scholar
  52. 52.
    Eubank TD, Roda JM, Liu H, O’Neil T, Marsh CB (2011) Opposing roles for hif-1alpha and hif-2alpha in the regulation of angiogenesis by mononuclear phagocytes. Blood 117(1):323–332PubMedCrossRefGoogle Scholar
  53. 53.
    Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) Hif-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347PubMedCrossRefGoogle Scholar
  54. 54.
    Schultz L, Chaux A, Albadine R, Hicks J, Kim JJ, De Marzo AM, Allaf ME, Carducci MA, Rodriguez R, Hammers HJ, Argani P, Reuter VE, Netto GJ (2011) Immunoexpression status and prognostic value of mtor and hypoxia-induced pathway members in primary and metastatic clear cell renal cell carcinomas. Am J Surg Pathol 35(10):1549–1556PubMedCrossRefGoogle Scholar
  55. 55.
    Florczyk U, Czauderna S, Stachurska A, Tertil M, Nowak W, Kozakowska M, Poellinger L, Jozkowicz A, Loboda A, Dulak J (2011) Opposite effects of hif-1alpha and hif-2alpha on the regulation of il-8 expression in endothelial cells. Free Radic Biol Med 51(10):1882–1892PubMedCrossRefGoogle Scholar
  56. 56.
    van Uden P, Kenneth NS, Webster R, Muller HA, Mudie S, Rocha S (2011) Evolutionary conserved regulation of hif-1beta by nf-kappab. PLoS Genet 7(1):e1001285PubMedCrossRefGoogle Scholar
  57. 57.
    Lund AK, Agbor LN, Zhang N, Baker A, Zhao H, Fink GD, Kanagy NL, Walker MK (2008) Loss of the aryl hydrocarbon receptor induces hypoxemia, endothelin-1, and systemic hypertension at modest altitude. Hypertension 51(3):803–809PubMedCrossRefGoogle Scholar
  58. 58.
    Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH (2009) Chronic hypoxia attenuates vegf signaling and angiogenic responses by downregulation of kdr in human endothelial cells. Am J Physiol Cell Physiol 296(5):C1162–C1170PubMedCrossRefGoogle Scholar
  59. 59.
    Chan YC, Khanna S, Roy S, Sen CK (2011) Mir-200b targets ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286(3):2047–2056PubMedCrossRefGoogle Scholar
  60. 60.
    Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, Flamme I (2003) Cooperative interaction of hypoxia-inducible factor-2alpha (hif-2alpha) and ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (flk-1). J Biol Chem 278(9):7520–7530PubMedCrossRefGoogle Scholar
  61. 61.
    Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA (1997) Characterization of a subset of the basic-helix-loop-helix-pas superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272(13):8581–8593PubMedCrossRefGoogle Scholar
  62. 62.
    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yu Han
    • 1
  • Ke Yang
    • 1
  • Aaron Proweller
    • 1
  • Guangjin Zhou
    • 1
  • Mukesh K. Jain
    • 1
  • Diana L. Ramirez-Bergeron
    • 1
    Email author
  1. 1.Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Harrington Heart and Vascular InstituteCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations