Skip to main content

Advertisement

Log in

A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Amino acids 50–77 (p28) of azurin, a 128 aa cupredoxin isolated from Pseudomonas aeruginosa, is essentially responsible for azurin’s preferential penetration of cancer cells. We now report that p28 also preferentially penetrates human umbilical vein endothelial cells (HUVEC), co-localized with caveolin-1 and VEGFR-2, and inhibits VEGF- and bFGF-induced migration, capillary tube formation and neoangiogenesis in multiple xenograft models. The antiangiogenic effect of p28 in HUVEC is associated with a dose-related non-competitive inhibition of VEGFR-2 kinase activity. However, unlike other antiangiogenic agents that inhibit the VEGFR-2 kinase, p28 decreased the downstream phosphorylation of FAK and Akt that normally precedes cellular repositioning of the cytoskeletal (F-actin), focal adhesion (FAK and paxillin), and cell to cell junction protein PECAM-1, inhibiting HUVEC motility and migration. The decrease in pFAK and pAkt levels suggests that p28 induces a pFAK-mediated loss of HUVEC motility and migration and a parallel Akt-associated reduction in cell matrix attachment and survival. This novel, direct antiangiogenic effect of p28 on endothelial cells may enhance the cell cycle inhibitory and apoptotic properties of this prototype peptide on tumor cell proliferation as it enters a Phase II clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J (2006) Antiangiogenesis in cancer therapy–endostatin and its mechanisms of action. Exp Cell Res 312:594–607

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J (2006) Tumor suppression by p53 is mediated in part by the antiangiogenic activity of endostatin and tumstatin. Sci STKE 2006:pe35

    Article  PubMed  Google Scholar 

  3. Lien WH, Chen CK, Lai LY, Chen YH, Wu MP, Wu LW (2004) Participation of cyclin D1 deregulation in TNP-470-mediated cytostatic effect: involvement of senescence. Biochem Pharmacol 68:729–738

    Article  PubMed  CAS  Google Scholar 

  4. Ingber D, Fujita T, Kishimoto S et al (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348:555–557

    Article  PubMed  CAS  Google Scholar 

  5. Singh RP, Raina K, Sharma G, Agarwal R (2008) Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res 14:7773–7780

    Article  PubMed  CAS  Google Scholar 

  6. Singh RP, Dhanalakshmi S, Agarwal C, Agarwal R (2005) Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: implications for angioprevention and antiangiogenic therapy. Oncogene 24:1188–1202

    Article  PubMed  CAS  Google Scholar 

  7. Wen W, Lu J, Zhang K, Chen S (2008) Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prev Res (Phila) 1:554–561

    Article  CAS  Google Scholar 

  8. Binder BR (2007) A novel application for murine double minute 2 antagonists: the p53 tumor suppressor network also controls angiogenesis. Circ Res 100:13–14

    Article  PubMed  CAS  Google Scholar 

  9. Moran DM, Maki CG (2010) Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol Cancer Ther 9:895–905

    Article  PubMed  CAS  Google Scholar 

  10. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  11. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  12. Korc M, Friesel RE (2009) The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Target 9:639–651

    Article  CAS  Google Scholar 

  13. Dempke WC, Zippel R (2010) Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor. Anticancer Res 30:4477–4483

    PubMed  CAS  Google Scholar 

  14. Punj V, Bhattacharyya S, Saint-Dic D et al (2004) Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23:2367–2378

    Article  PubMed  CAS  Google Scholar 

  15. Yang DS, Miao XD, Ye ZM et al (2005) Bacterial redox protein azurin induce apoptosis in human osteosarcoma U2OS cells. Pharmacol Res 52:413–421

    Article  PubMed  CAS  Google Scholar 

  16. Apiyo D, Wittung-Stafshede P (2005) Unique complex between bacterial azurin and tumor-suppressor protein p53. Biochem Biophys Res Commun 332:965–968

    Article  PubMed  CAS  Google Scholar 

  17. De Grandis V, Bizzarri AR, Cannistraro S (2007) Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. J Mol Recognit 20:215–226

    Article  PubMed  Google Scholar 

  18. Taranta M, Bizzarri AR, Cannistraro S (2008) Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. J Mol Recognit 21:63–70

    Article  PubMed  CAS  Google Scholar 

  19. Punj V, Das Gupta TK, Chakrabarty AM (2003) Bacterial cupredoxin azurin and its interactions with the tumor suppressor protein p53. Biochem Biophys Res Commun 312:109–114

    Article  PubMed  CAS  Google Scholar 

  20. Taylor BN, Mehta RR, Yamada T et al (2009) Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res 69:537–546

    Article  PubMed  CAS  Google Scholar 

  21. Yamada T, Mehta RR, Lekmine F et al (2009) A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol Cancer Ther 8:2947–2958

    Article  PubMed  CAS  Google Scholar 

  22. Jia L, Gorman G, Coward L et al. (2010) Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother Pharmacol 1–12. doi:10.1007/s00280-010-1518-3

  23. Ueda EK, Lo HL, Bartolini P, Walker AM (2006) S179D prolactin primarily uses the extrinsic pathway and mitogen-activated protein kinase signaling to induce apoptosis in human endothelial cells. Endocrinology 147:4627–4637

    Article  PubMed  CAS  Google Scholar 

  24. Rauth S, Kichina J, Green A, Bratescu L, Das Gupta TK (1994) Establishment of a human melanoma cell line lacking p53 expression and spontaneously metastasizing in nude mice. Anticancer Res 14:2457–2463

    PubMed  CAS  Google Scholar 

  25. Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 89:7919–7923

    Article  PubMed  CAS  Google Scholar 

  26. Fong TA, Shawver LK, Sun L et al (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106

    PubMed  CAS  Google Scholar 

  27. Wright TJ, Leach L, Shaw PE, Jones P (2002) Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Exp Cell Res 280:159–168

    Article  PubMed  CAS  Google Scholar 

  28. Dunphy F, Stack BC Jr, Boyd JH, Dunleavy TL, Kim HJ, Dunphy CH (2002) Microvessel density in advanced head and neck squamous cell carcinoma before and after chemotherapy. Anticancer Res 22:1755–1758

    PubMed  Google Scholar 

  29. Secchiero P, Corallini F, Gonelli A et al (2007) Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 100:61–69

    Article  PubMed  CAS  Google Scholar 

  30. Sheibani N, Newman PJ, Frazier WA (1997) Thrombospondin-1, a natural inhibitor of angiogenesis, regulates platelet-endothelial cell adhesion molecule-1 expression and endothelial cell morphogenesis. Mol Biol Cell 8:1329–1341

    PubMed  CAS  Google Scholar 

  31. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    PubMed  CAS  Google Scholar 

  32. Wu J, Sheibani N (2003) Modulation of VE-cadherin and PECAM-1 mediated cell-cell adhesions by mitogen-activated protein kinases. J Cell Biochem 90:121–137

    Article  PubMed  CAS  Google Scholar 

  33. Yamada T, Goto M, Punj V et al (2002) Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci USA 99:14098–14103

    Article  PubMed  CAS  Google Scholar 

  34. Yamada T, Hiraoka Y, Ikehata M et al (2004) Apoptosis or growth arrest: modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc Natl Acad Sci USA 101:4770–4775

    Article  PubMed  CAS  Google Scholar 

  35. Ye ZM, Miao XD, Yang DS, Xu RZ, Huang X, Ge FF (2005) Selective inducement effect of bacterial redox protein azurin on apoptosis of human osteosarcoma cell line U2OS. Ai Zheng 24:298–304

    PubMed  CAS  Google Scholar 

  36. Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TK, Chakrabarty AM (2005) Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 7:1418–1431

    Article  PubMed  CAS  Google Scholar 

  37. Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y (2010) Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 116:1027–1032

    Article  PubMed  CAS  Google Scholar 

  38. Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001:RE21

    Article  PubMed  CAS  Google Scholar 

  39. Claesson-Welsh L (2003) Signal transduction by vascular endothelial growth factor receptors. Biochem Soc Trans 31:20–24

    Article  PubMed  CAS  Google Scholar 

  40. Gong C, Stoletov KV, Terman BI (2004) VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis 7:313–321

    Article  PubMed  CAS  Google Scholar 

  41. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells–over and over and over again. Nat Cell Biol 4:E97–E100

    Article  PubMed  CAS  Google Scholar 

  42. Keezer SM, Ivie SE, Krutzsch HC, Tandle A, Libutti SK, Roberts DD (2003) Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Res 63:6405–6412

    PubMed  CAS  Google Scholar 

  43. Romer LH, Birukov KG, Garcia JG (2006) Focal adhesions: paradigm for a signaling nexus. Circ Res 98:606–616

    Article  PubMed  CAS  Google Scholar 

  44. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022

    Article  PubMed  CAS  Google Scholar 

  45. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  PubMed  CAS  Google Scholar 

  46. DeLisser HM, Christofidou-Solomidou M, Strieter RM et al (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151:671–677

    PubMed  CAS  Google Scholar 

  47. Lie SO, Schofield B (1973) Inactivation of lysosomal function in normal cultured human fibroblasts by chloroquine. Biochem Pharmacol 22:3109–3114

    Article  PubMed  CAS  Google Scholar 

  48. Somanath PR, Razorenova OV, Chen J, Byzova TV (2006) Akt1 in endothelial cell and angiogenesis. Cell Cycle 5:512–518

    Article  PubMed  CAS  Google Scholar 

  49. Lim ST, Chen XL, Lim Y et al (2008) Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29:9–22

    Article  PubMed  CAS  Google Scholar 

  50. Ogawara Y, Kishishita S, Obata T et al (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850

    Article  PubMed  CAS  Google Scholar 

  51. Cance WG, Golubovskaya VM (2008) Focal adhesion kinase versus p53: apoptosis or survival? Sci Signal 1:pe22

    Article  PubMed  Google Scholar 

  52. Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229

    Article  PubMed  CAS  Google Scholar 

  53. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207

    Article  PubMed  CAS  Google Scholar 

  54. Bhide RS, Lombardo LJ, Hunt JT et al (2010) The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases. Mol Cancer Ther 9:369–378

    Article  PubMed  CAS  Google Scholar 

  55. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728

    Article  PubMed  CAS  Google Scholar 

  56. Cheng X, Xia W, Yang JY et al (2010) Activation of murine double minute 2 by Akt in mammary epithelium delays mammary involution and accelerates mammary tumorigenesis. Cancer Res 70:7684–7689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through a Sponsored Research Agreement between CDG Therapeutics, Inc., and the University of Illinois at Chicago (UIC). All terms of the Sponsored Research Agreements are managed by UIC in accordance with its conflict of interest management policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Das Gupta.

Additional information

Rajeshwari R. Mehta and Tohru Yamada contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R.R., Yamada, T., Taylor, B.N. et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 14, 355–369 (2011). https://doi.org/10.1007/s10456-011-9220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9220-6

Keywords

Navigation