Skip to main content

Advertisement

Log in

High-resolution mass spectrometric analysis of the secretome from mouse lung endothelial progenitor cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Recently, we isolated and characterized resident endothelial progenitor cells from the lungs of adult mice. These cells have a high proliferation potential, are not transformed and can differentiate into blood- and lymph-vascular endothelial cells under in vitro and in vivo conditions. Here we studied the secretome of these cells by nanoflow liquid chromatographic mass spectrometry (LC–MS). For analysis, 3-day conditioned serum-free media were used. We found 133 proteins belonging to the categories of membrane-bound or secreted proteins. Thereby, several of the membrane-bound proteins also existed as released variants. Thirty-five proteins from this group are well known as endothelial cell- or angiogenesis-related proteins. The MS analysis of the secretome was supplemented and confirmed by fluorescence activated cell sorting analyses, ELISA measurements and immunocytological studies of selected proteins. The secretome data presented in this study provides a platform for the in-depth analysis of endothelial progenitor cells and characterizes potential cellular markers and signaling components in hem- and lymphangiogeneis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tunica DG, Yin X, Sidibe A, Stegemann C, Nissum M, Zeng L, Brunet M, Mayr M (2009) Proteomic analysis of the secretome of human umbilical vein endothelila cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. Proteomics 9:4991–4996

    Article  PubMed  CAS  Google Scholar 

  2. Pelletteri-Hahn MC, Warren MC, Didier DN, Winkler EL, Mirza SP, Greene AS, Olivier M (2006) Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J Proteome Res 5:2861–2864

    Article  Google Scholar 

  3. Flora JW, Edmiston J, Secrist R, Li G, Rana G, Langston T, McKinney W (2008) Identification of in vitro differential cell secretions due to cigarette smoke condensate exposure using nanoflow capillary liquid chromatography and high-resolution mass spectrometry. Anal Bioanal Chem 391:2845–2856

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  5. Heil M, Mitnacht-Krauss R, Issbrück K, van den Heuvel J, Dehio C, Schaper W, Clauss M, Weich HA (2003) An engineered heparin-binding form of VEGF-E (hbVEGF-E). Angiogenesis 6:201–211

    Article  PubMed  CAS  Google Scholar 

  6. Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:2321–2325

    Article  Google Scholar 

  7. Pacilli A, Pasquinelli G (2009) Vascular wall resident progenitor cells. A review. Exp Cell Res 315:901–914

    Google Scholar 

  8. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10:138–146

    Article  PubMed  CAS  Google Scholar 

  9. Schniedermann J, Rennecke M, Buttler K, Richter G, Städtler A-M, Norgall S, Badar M, Barleon B, May T, Wilting J, Weich HA (2010) Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels. BMC Cell Biol 11:50

    Article  PubMed  Google Scholar 

  10. Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Steven T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:419–430

    Article  Google Scholar 

  11. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  12. Keller A, Nesvizhskii A, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:58–92

    Google Scholar 

  13. Nesvizhskii A, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  14. May T, Müller PP, Weich HA, Froese N, Deutsch U, Wirth D, Kröger A, Hauser H (2005) Establishment of murine cell lines by constitutive and conditional immortalization. J Biotech 120:99–110

    Article  CAS  Google Scholar 

  15. Hornig C, Weich HA (1999) Soluble VEGF receptors. Angiogenesis 3:33–39

    Article  PubMed  CAS  Google Scholar 

  16. Albuquerque RJ, Hayashi T, Cho WG, Kleinmann ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Ambati BK, Amati J (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15:1023–1030

    Article  PubMed  CAS  Google Scholar 

  17. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an enddogenous encoded soluble receptor. Proc Natl Acad Sci USA 90:10705–10709

    Article  PubMed  CAS  Google Scholar 

  18. Mouawad R, Spano J-P, Comperat E, Capron F, Khayat D (2009) Tumoural expression and circulating levels of VEGFR-3 (flt-4) in metastic melanoma patients: correlation with clinical parameters and outcome. Eur J Cancer 45:1407–1414

    Article  PubMed  CAS  Google Scholar 

  19. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC, Klagsbrun M (2004) Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114:1260–1271

    PubMed  CAS  Google Scholar 

  20. Oka M, Iwata C, Suzuki HI, Kiyono K, Morishita Y, Watabe T, Kormuro A, Kano MR, Miyazono K (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111:4571–4579

    Article  PubMed  CAS  Google Scholar 

  21. Murray LJ, Bruno E, Uchida N, Hoffman R, Nayar R, Yeo EL, Schuh AC, Sutherland DR (1999) CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells. Exp Hematol 27(8):1282–1294

    Article  PubMed  CAS  Google Scholar 

  22. Marlow R, Binnewis M, Sorensen LK, Monica SD, Strickland P, Forsberg EC, Li DY, Hinck L (2010) Vascular Robo4 restricts proangiogenc VEGF signaling in breast. Proc Natl Acad Sci USA. May 24 (Epub ahead of print)

  23. Sheldon H, Andre H, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Health VL, Bicknell R (2009) Active involvment of Robo1 and Robo4 in filopodia formation and endothelial cll motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23:513–522

    Article  PubMed  CAS  Google Scholar 

  24. Yokota T, Oritani K, Butz S, Kokame K, Kincade PW, Miyata T, Vestweber D, Kanakura Y (2009) The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood 113:2914–2923

    Article  PubMed  CAS  Google Scholar 

  25. Danussi C, Spessotto P, Petrucco A, Wassermann B, Sabatelli P, Montesi M, Doliana R, Bressan GM, Colombatti A (2008) Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol 28:4026–4039

    Article  PubMed  CAS  Google Scholar 

  26. Karikoski M, Irjala H, Maksimov M, Miiluniemi M, Granfors K, Hernesniemi S, Elima K, Moldenhauer G, Schledzewski K, Kzhyshkowska J, Goerdt S, Salmi M, Jalkanen S (2009) Clever-1/stabilin-1 regulates lymphocyte migration within lymphatics and leucocyte entrance to sites of inflammation. Eur J Immunol 39:3477–3487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dietmar Vestweber (Muenster) for the ESAM and VE-cadherin antibodies, Dr. Sirpa Jalkanen (Turku) for the Stabilin-1/CLEVER1 antibody, Dr. Alfonso Colombatti (Udine) for the Emilin1 antibody and Dr. Urban Deutsch (Bern) for the KDR/VEGFR-2 and -3 antibodies. Especially we would like to thank Mrs. B. Pawletta for ELISA measurements and cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert A. Weich.

Additional information

Katherina Hemmen and Tobias Reinl contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 23 kb)

(XLS 147 kb)

(XLS 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmen, K., Reinl, T., Buttler, K. et al. High-resolution mass spectrometric analysis of the secretome from mouse lung endothelial progenitor cells. Angiogenesis 14, 163–172 (2011). https://doi.org/10.1007/s10456-011-9200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9200-x

Keywords

Navigation