Skip to main content
Log in

CCN family proteins and angiogenesis: from embryo to adulthood

  • Review
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The CCN family is a novel class of extracellular signal modulators that has been recently established. Typical members are composed of four conserved modules connected tandem, each of which is rich in cysteines and highly interactive with other molecules. The mammalian CCN family consists of six members, most of which have been described as multifunctional factors for the developmental process of mesenchymal tissue including blood vessel formation/induction. Particularly, the angiogenic properties of the three classical members, CCN1, 2 and 3 have so far been characterized, and their physiological and pathological significance has thus been indicated. Recent research has uncovered a unique mechanism regarding these proteins in promoting and/or modulating developmental, physiological and pathological angiogenic events. Namely, CCN proteins exert their ability to drive angiogenesis, not by stimulating a particular behavior of a particular type of cells, but by manipulating the cell communication networks that integrate most of the associated molecules/cells toward angiogenesis. In this article, the role of the CCN proteins in a variety of angiogenic events as an organizer of microenvironmental cell society is comprehensively described, together with a brief summary of the recent findings on each CCN family member relevant to angiogenesis including cardiovascular development and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  2. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  PubMed  CAS  Google Scholar 

  3. Ribatti D (2005) The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol 128:303–309

    Article  PubMed  CAS  Google Scholar 

  4. Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327:125–130

    Article  PubMed  CAS  Google Scholar 

  5. Lau LF, Lam SC (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  PubMed  CAS  Google Scholar 

  6. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  PubMed  CAS  Google Scholar 

  7. Perbal B, Takigawa M (eds) (2005) CCN proteins—a new family of cell growth and differentiation regulators. Imperial College Press, London

    Google Scholar 

  8. Takigawa M, Nakanishi T, Kubota S, Nishida T (2003) Role of CTGF/HCS24/ecogenin in skeletal growth control. J Cell Physiol 194:256–266

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien TP, Yang GP, Sanders L, Lau LF (1990) Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 10:3569–3577

    PubMed  CAS  Google Scholar 

  10. Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Article  PubMed  CAS  Google Scholar 

  11. Joliot V, Martinerie C, Dambrine G et al (1992) Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol 12:10–21

    PubMed  CAS  Google Scholar 

  12. Hashimoto Y, Shindo-Okada N, Tani M et al (1998) Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses in vivo tumor growth and metastasis of K-1735 murine melanoma cells. J Exp Med 187:289–296

    Article  PubMed  CAS  Google Scholar 

  13. Zhang R, Averboukh L, Zhu W et al (1998) Identification of rCop-1, a new member of the CCN protein family, as a negative regulator for cell transformation. Mol Cell Biol 18:6131–6141

    PubMed  CAS  Google Scholar 

  14. Kumar S, Hand AT, Connor JR et al (1999) Identification and cloning of a connective tissue growth factor-like cDNA from human osteoblasts encoding a novel regulator of osteoblast functions. J Biol Chem 274:17123–17131

    Article  PubMed  CAS  Google Scholar 

  15. Pennica D, Swanson TA, Welsh JW et al (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 95:14717–14722

    Article  PubMed  CAS  Google Scholar 

  16. Brigstock DR, Goldschmeding R, Katsube KI et al (2003) Proposal for a unified CCN nomenclature. Mol Pathol 56:127–128

    Article  PubMed  CAS  Google Scholar 

  17. Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4:599–604

    PubMed  CAS  Google Scholar 

  18. Babic AM, Chen CC, Lau LF (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966

    PubMed  CAS  Google Scholar 

  19. Desnoyers L, Arnott D, Pennica D (2001) WISP-1 binds to decorin and biglycan. J Biol Chem 276:47599–47607

    Article  PubMed  CAS  Google Scholar 

  20. Inoki I, Shiomi T, Hashimoto G et al (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16:219–221

    PubMed  CAS  Google Scholar 

  21. Jedsadayanmata A, Chen CC, Kireeva ML et al (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem 274:24321–24327

    Article  PubMed  CAS  Google Scholar 

  22. Sakamoto K, Yamaguchi S, Ando R et al (2002) The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J Biol Chem 277:29399–29405

    Article  PubMed  CAS  Google Scholar 

  23. Schober JM, Chen N, Grzeszkiewicz TM et al (2002) Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99:4457–4465

    Article  PubMed  CAS  Google Scholar 

  24. Segarini PR, Nesbitt JE, Li D et al (2001) The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem 276:40659–40667

    Article  PubMed  CAS  Google Scholar 

  25. Wahab NA, Weston BS, Mason RM (2005) Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 16:340–351

    Article  PubMed  CAS  Google Scholar 

  26. Asano M, Kubota S, Nakanishi T et al (2005) Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells. Cell Commun Signal 5:11

    Article  CAS  Google Scholar 

  27. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153–165

    Article  PubMed  CAS  Google Scholar 

  28. Gao R, Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279:8848–8855

    Article  PubMed  CAS  Google Scholar 

  29. Igarashi A, Okochi H, Bradham DM, Grotendorst GR (1993) Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 4:637–645

    PubMed  CAS  Google Scholar 

  30. Kireeva ML, Latinkic BV, Kolesnikova TV et al (1997) Cyr61 and Fisp12 are both ECM-associated signaling molecules: activities, metabolism, and localization during development. Exp Cell Res 233:63–77

    Article  PubMed  CAS  Google Scholar 

  31. Nakanishi T, Nishida T, Shimo T et al (2000) Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 141:264–273

    Article  PubMed  CAS  Google Scholar 

  32. Nishida T, Nakanishi T, Asano M et al (2000) Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro. J Cell Physiol 184:197–206

    Article  PubMed  CAS  Google Scholar 

  33. Safadi FF, Xu J, Smock SL et al (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196:51–62

    Article  PubMed  CAS  Google Scholar 

  34. Hishikawa K, Oemar BS, Tanner FC et al (1999) Connective tissue growth factor induces apoptosis in human breast cancer cell line MCF-7. J Biol Chem 274:37461–37466

    Article  PubMed  CAS  Google Scholar 

  35. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  36. Kondo S, Kubota S, Shimo T et al (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23:769–776

    Article  PubMed  CAS  Google Scholar 

  37. Kubo M, Kikuchi K, Nashiro K et al (1998) Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol 139:192–197

    Article  PubMed  CAS  Google Scholar 

  38. Moritani NH, Kubota S, Nishida T et al (2003) Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett 192:205–214

    Article  PubMed  CAS  Google Scholar 

  39. Shimo T, Nakanishi T, Nishida T et al (2001) Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology 61:315–322

    Article  PubMed  CAS  Google Scholar 

  40. Soon LL, Yie TA, Shvarts A et al (2003) Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem 278:11465–11470

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka S, Sugimachi K, Saeki H et al (2001) A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene 20:5525–5532

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka S, Sugimachi K, Shimada M et al (2002) Variant WISPs as targets for gastrointestinal carcinomas. Gastroenterology 123:392–393

    Article  PubMed  Google Scholar 

  43. Tanaka S, Sugimachi K, Kameyama T et al (2003) Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37:1122–1129

    Article  PubMed  CAS  Google Scholar 

  44. Tong X, Xie D, O’Kelly J et al (2001) Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem 276:47709–47714

    Article  PubMed  CAS  Google Scholar 

  45. Xie D, Nakachi K, Wang H et al (2001) Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61:8917–8923

    PubMed  CAS  Google Scholar 

  46. Chen CC, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276:10443–10452

    Article  PubMed  CAS  Google Scholar 

  47. Lin CG, Leu SJ, Chen N et al (2003) CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem 278:24200–24208

    Article  PubMed  CAS  Google Scholar 

  48. Shimo T, Nakanishi T, Kimura Y et al (1998) Inhibition of endogenous expression of connective tissue growth factor by its antisense oligonucleotide and antisense RNA suppresses proliferation and migration of vascular endothelial cells. J Biochem (Tokyo) 124:130–140

    CAS  Google Scholar 

  49. Shimo T, Nakanishi T, Nishida T et al (1999) Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem (Tokyo) 126:137–145

    CAS  Google Scholar 

  50. Hoshijima M, Hattori T, Inoue M et al (2006) CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett 20:580:1376–1382

    Google Scholar 

  51. Nishida T, Kubota S, Fukunaga T et al (2003) CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol 196:265–275

    Article  PubMed  CAS  Google Scholar 

  52. Brigstock DR, Steffen CL, Kim GY et al (1997) Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 272:20275–20282

    Article  PubMed  CAS  Google Scholar 

  53. Kubota S, Eguchi T, Shimo T et al (2001) Novel mode of processing and secretion of connective tissue growth factor/ecogenin (CTGF/Hcs24) in chondrocytic HCS-2/8 cells. Bone 29:155–161

    Article  PubMed  CAS  Google Scholar 

  54. Hinton DR, Spee C, He S et al (2004) Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 27:758–764

    PubMed  CAS  Google Scholar 

  55. Boes M, Dake BL, Booth BA et al (1999) Connective tissue growth factor (IGFBP-rP2) expression and regulation in cultured bovine endothelial cells. Endocrinology 140:1575–1580

    Article  PubMed  CAS  Google Scholar 

  56. Ivkovic S, Yoon BS, Popoff SN et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  PubMed  CAS  Google Scholar 

  57. Kutz WE, Gong Y, Warman ML (2005) WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid dysplasia, is not essential for skeletal function in mice. Mol Cell Biol 25:414–421

    Article  PubMed  CAS  Google Scholar 

  58. Mo FE, Muntean AG, Chen CC et al (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  PubMed  CAS  Google Scholar 

  59. Suzuma K, Naruse K, Suzuma I et al (2000) Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem 275:40725–40731

    Article  PubMed  CAS  Google Scholar 

  60. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 95:6355–6360

    Article  PubMed  CAS  Google Scholar 

  61. Ginsberg MH, Partridge A, Shattil SJ (2005) Integrin regulation. Curr Opin Cell Biol 17:509–516

    Article  PubMed  CAS  Google Scholar 

  62. Leu SJ, Lam SC, Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255

    Article  PubMed  CAS  Google Scholar 

  63. Grzeszkiewicz TM, Lindner V, Chen N et al (2002) The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology 143:1441–1450

    Article  PubMed  CAS  Google Scholar 

  64. Kolesnikova TV, Lau LF (1998) Human CYR61-mediated enhancement of bFGF-induced DNA synthesis in human umbilical vein endothelial cells. Oncogene 16:747–754

    Article  PubMed  CAS  Google Scholar 

  65. Grotendorst GR, Duncan MR (2005) Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J 19:729–738

    Article  PubMed  CAS  Google Scholar 

  66. Friedrichsen S, Heuer H, Christ S et al (2005) Gene expression of connective tissue growth factor in adult mouse. Growth Factors 23:43–53

    PubMed  CAS  Google Scholar 

  67. Surveyor GA, Brigstock DR (1999) Immunohistochemical localization of connective tissue growth factor (CTGF) in the mouse embryo between days 7.5 and 14.5 of gestation. Growth Factors 17:115–124

    Article  PubMed  CAS  Google Scholar 

  68. Delmolino LM, Stearns NA, Castellot JJ Jr (2001) COP-1, a member of the CCN family, is a heparin-induced growth arrest specific gene in vascular smooth muscle cells. J Cell Physiol 188:45–55

    Article  PubMed  CAS  Google Scholar 

  69. Kleer CG, Zhang Y, Pan Q et al (2002) WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 21:3172–3180

    Article  PubMed  CAS  Google Scholar 

  70. Gupta N, Wang H, McLeod TL et al (2001) Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol 54:293–299

    Article  PubMed  CAS  Google Scholar 

  71. Kondo S, Kubota S, Mukudai Y et al (2006) Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 25:1099–1110

    Article  PubMed  CAS  Google Scholar 

  72. Kubota S, Kondo S, Eguchi T et al (2000) Identification of an RNA element that confers post-transcriptional repression of connective tissue growth factor/hypertrophic chondrocyte specific 24 (ctgf/hcs24) gene: similarities to retroviral RNA–protein interactions. Oncogene 19:4773–4786

    Article  PubMed  CAS  Google Scholar 

  73. Kubota S, Takigawa M (2002) Driving the driver: molecular regulation of CTGF/Hcs24/CCN2 that regulates chondrocyte growth and differentiation. In Recent Research Developments in Biophysics and Biochemistry. Research Signpost, Kerala, pp 995–1012

  74. Hayashi N, Kakimuma T, Soma Y et al (2002) Connective tissue growth factor is directly related to liver fibrosis. Hepatogastroenterology 49:133–135

    PubMed  CAS  Google Scholar 

  75. Ito Y, Aten J, Bende RJ et al (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53:853–861

    Article  PubMed  CAS  Google Scholar 

  76. Sawai K, Mori K, Mukoyama M et al (2003) Angiogenic protein Cyr61 is expressed by podocytes in anti-Thy-1 glomerulonephritis. J Am Soc Nephrol 14:1154–1163

    Article  PubMed  CAS  Google Scholar 

  77. Igarashi A, Nashiro K, Kikuchi K et al (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733

    Article  PubMed  CAS  Google Scholar 

  78. Dean RG, Balding LC, Candido R et al (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256

    Article  PubMed  CAS  Google Scholar 

  79. Oemar BS, Werner A, Garnier JM et al (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95:831–839

    PubMed  CAS  Google Scholar 

  80. Hilfiker A, Hilfiker-Kleiner D, Fuchs M et al (2002) Expression of CYR61, an angiogenic immediate early gene, in arteriosclerosis and its regulation by angiotensin II. Circulation 106:254–260

    Article  PubMed  CAS  Google Scholar 

  81. Cicha I, Yilmaz A, Klein M et al (2005) Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler Thromb Vasc Biol 25:1008–1013

    Article  PubMed  CAS  Google Scholar 

  82. Yoshisue H, Suzuki K, Kawabata A et al (2002) Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 162:323–334

    Article  PubMed  CAS  Google Scholar 

  83. Sohn M, Tan Y, Wang B et al (2006) Mechanisms of low-density lipoprotein-induced expression of connective tissue growth factor in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 290:H1624–1634

    Article  PubMed  CAS  Google Scholar 

  84. Igarashi A, Okochi H, Bradham DM, Grotendorst GR (1993) Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 4:637–645

    PubMed  CAS  Google Scholar 

  85. Nishida T, Kubota S, Kojima S et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319

    Article  PubMed  CAS  Google Scholar 

  86. Chen CC, Mo FE, Lau LF (2001) The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276:47329–47337

    Article  PubMed  CAS  Google Scholar 

  87. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  88. Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5:1108–1116

    Article  PubMed  CAS  Google Scholar 

  89. Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, Sasaki A, Takigawa M (2006) Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Miner Res 21:1045–1059

    Article  PubMed  CAS  Google Scholar 

  90. Kondo S, Tanaka N, Kubota S et al (2006) Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor (VEGF) in human endothelial cells. Mol Cancer Therap 5:129–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (S)(M.T.) and (C)(S.K.), for Exploratory Research (M.T) from Ministry of Education, Culture, Sports, Science and Technology of Japan and Japan Society for the Promotion of Science; the Kurozumi Medical Foundation (S. K.); the Foundation for Growth Science in Japan (M. T.); the Sumitomo Foundation (M. T.); and the Foundation of Sanyo Broadcasting (S. K.). We also thank Ms. Yuki Nonami for her valuable secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Takigawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, S., Takigawa, M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10, 1–11 (2007). https://doi.org/10.1007/s10456-006-9058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9058-5

Keywords

Navigation