Skip to main content
Log in

Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Sulforaphane (SUL), one of the isothiocyanates (ITCs), has recently been focused due to its inhibitory effects on tumor cell growth in vitro and in vivo, which is dependent on the direct effect on cancer cells. In the present study, we aimed to investigate the potential anti-angiogenic effect of SUL and its mechanism of action. Using the human umbilical vein endothelial cells (HUVECs) as a model of angiogenesis, we investigated the effect of SUL on the various steps of angiogenesis, including the proliferation of endothelial cells, tubular formation, and matrix metalloproteinase (MMP) production. Sulforaphane induced a dose-dependent decrease in the proliferative activity of endothelial cells, which was dependent on cell apoptosis. Also SUL inhibited tube formation on matrigel, but did not affect MMP production. The present results demonstrate the anti-angiogenic activity of SUL and its potential use as an anti-cancer drug is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aFGF:

Acidic fibroblast growth factor

DMSO:

Dimethyl sulfoxide

ECs:

Endothelial cells

FCS:

Fetal calf serum

HUVECs:

Human umbilical vein endothelial cells

ITCs:

Isothiocyanates

MMP:

Matrix metalloproteinase

PBS:

Phosphate-buffered saline

SUL:

Sulforaphane

TUNEL:

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling

References

  1. Kohlmeier L, Mendez M (1997) Controversies surrounding diet and breast cancer. Proc Nutr Soc 56:369–382

    Article  PubMed  CAS  Google Scholar 

  2. Zhang SM, Hunter DJ, Rosner BA et al (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485

    PubMed  CAS  Google Scholar 

  3. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  PubMed  CAS  Google Scholar 

  4. Kolonel LN, Hankin JH, Whittemore AS et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case–control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  5. Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    Article  PubMed  CAS  Google Scholar 

  6. Wattenberg LW (1987) Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8:1971–1973

    Article  PubMed  CAS  Google Scholar 

  7. Yang YM, Conaway CC, Chiao JW et al (2002) Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 62:2–7

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Kensler TW, Cho CG et al (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–3150

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res 58:4632–4639

    PubMed  CAS  Google Scholar 

  10. Prestera T, Talalay P (1995) Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 92:8965–8969

    Article  PubMed  CAS  Google Scholar 

  11. Ye L, Zhang Y (2001) Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Carcinogenesis 22:1987–1992

    Article  PubMed  CAS  Google Scholar 

  12. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  PubMed  CAS  Google Scholar 

  13. Gao X, Dinkova-Kostova AT, Talalay P (2001) Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA 98:15221–15226

    Article  PubMed  CAS  Google Scholar 

  14. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Talalay P, Cho CG et al (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  PubMed  CAS  Google Scholar 

  16. Fimognari C, Nusse M, Cesari R et al (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23:581–586

    Article  PubMed  CAS  Google Scholar 

  17. Gamet-Payrastre L, Li P, Lumeau S et al (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433

    PubMed  CAS  Google Scholar 

  18. Singh SV, Herman-Antosiewicz A, Singh AV et al (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279:25813–25822

    Article  PubMed  CAS  Google Scholar 

  19. Chiao JW, Chung FL, Kancherla R et al (2002) Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol 20:631–636

    PubMed  CAS  Google Scholar 

  20. Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130

    PubMed  CAS  Google Scholar 

  21. Fimognari C, Nusse M, Berti F et al (2002) Cyclin D3 and p53 mediate sulforaphane-induced cell cycle delay and apoptosis in non-transformed human T lymphocytes. Cell Mol Life Sci 59:2004–2012

    Article  PubMed  CAS  Google Scholar 

  22. Yazawa K, Tsuno NH, Kitayama J et al (2005) Selective inhibition of cyclooxygenase (COX)-2 inhibits endothelial cell proliferation by induction of cell cycle arrest. Int J Cancer 113:541–548

    Article  PubMed  CAS  Google Scholar 

  23. Asakage M, Tsuno NH, Kitayama J et al (2004) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor (pravastatin) inhibits endothelial cell proliferation dependent on G1 cell cycle arrest. Anticancer Drugs 15:625–632

    Article  PubMed  CAS  Google Scholar 

  24. Tomozawa S, Nagawa H, Tsuno N et al (1999) Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522. Br J Cancer 81:1274–1279

    Article  PubMed  CAS  Google Scholar 

  25. Hecht SS (1999) Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 129:768S-774S

    PubMed  CAS  Google Scholar 

  26. Talalay P, Zhang Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24:806–810

    PubMed  CAS  Google Scholar 

  27. Bertl E, Bartsch H, Gerhauser C (2006) Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 5:575–585

    Article  PubMed  CAS  Google Scholar 

  28. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  29. Matsuda K, Yoshida K, Taya Y et al (2002) p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res 62:2883–2889

    PubMed  CAS  Google Scholar 

  30. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family␣proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  PubMed  CAS  Google Scholar 

  31. Kluck RM, Bossy-Wetzel E, Green DR et al (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  32. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  34. Jiao D, Yu MC, Hankin JH et al (1998) Total isothiocyanate contents in cooked vegetables frequently consumed in Singapore. Journal of Agricultural and Food Chemistry 46:1055–1058

    Article  CAS  Google Scholar 

  35. Ye L, Dinkova-Kostova AT, Wade KL et al (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported partly by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, partly by a grant from the Ministry of Health, Labour and Welfare of Japan, and partly by a grant from the Sankyo Foundation of Life Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Asakage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asakage, M., Tsuno, N.H., Kitayama, J. et al. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis 9, 83–91 (2006). https://doi.org/10.1007/s10456-006-9034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9034-0

Keywords

Navigation