Skip to main content

Advertisement

Log in

Angiogenesis in the human heart: Gene and cell therapy

  • Review
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The concept of therapeutic angiogenesis – stimulation of new vessels growth to restore blood supply to ischemic tissue has been studied in a number of clinical trials in patients with advanced coronary and peripheral arterial disease. This review discusses the main biological processes underlying new vessel growth and addresses applications of growth factor and cell therapy based on the stimulation of angiogenesis. While still very young and controversial, cell therapy has an enormous potential that is yet to be explored. Multiple questions remain unanswered including the choice of the best cell type, patient selection and the mechanism of action. Nevertheless, much should be expected in this area in the next decade with the likely emergence of new therapies for treatment of ischemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC133:

or CD133 antigen, prominin-like protein 1

Akt:

protein kinase B

Ang:

angiopoientin

BM-MNCs:

bone marrow-derived mononuclear cells

c-Kit:

or CD117, tyrosine kinase receptor for stem cell factor

CMV:

cytomegalovirus

CXC:

α-chemokines

eNOS:

endothelial nitric oxide synthase

EPCs:

endothelial progenitor cells

FGF:

fibroblast growth factor

Flk-1:

fetal liver kinase (VEGF receptor 2)

Flt-1:

fms-like tyrosine kinase-1 (VEGF receptor 1)

G-CSF:

granulocyte colony-stimulating factor

GM-CSF:

granulocyte-macrophage colony-stimulating factor

HGF:

hepatocyte growth factor

HIF:

hypoxia inducible factor

HMG-CoA:

3-hydroxy-3-methyl-glutaryl coenzyme A

IGF:

insulin-like growth factor

IL:

interleukin

MCP:

monocyte chemotactic protein

MMP:

matrix metalloproteinase

PA:

plasminogen activator

NOGA:

non-optical guiding apparatus (cardiac mapping system)

PDGF:

platelet-derived growth factor

PECAM:

platelet endothelial cell adhesion molecule

Pfu:

plaque-forming unit

PI3-kinase:

phosphoinositide-3-kinase

PlGF:

placental growth factor

PR39:

proline–arginine rich peptide 39 amino acids

Sca-1:

stem cell antigen-1

SDF:

stromal cell-derived factor

TGF:

transforming growth factor

Tie-1,-2:

receptor tyrosine kinases

TNF:

tumor necrosis factor

VE-cadherin:

vascular endothelial cadherin

VEGF:

vascular endothelial growth factor

References

  1. Association AH. Heart Disease and Stroke Statistics-2003 Update. Dallas: American Heart Association, 2003

  2. Schumacher B, Pecher P, von Specht B, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment for coronary heart disease. Circulation 1998;97:645–50

    PubMed  CAS  Google Scholar 

  3. Selke F, Laham R, Edelman E et al. Therapeutic angiogenesis with basic fibroblast growth factor: Technique and early results. Ann Thorac Surg 1998;65:1540–44

    Article  PubMed  Google Scholar 

  4. Henry T, Rocha-Singh K, Isner J et al. Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial (abstract). J Am Coll Cardiol 1998; 31(Suppl A):65A

    Google Scholar 

  5. Losordo D, Vale P, Symes J et al. Gene therapy for myocardial angiogenesis. Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–4

    PubMed  CAS  Google Scholar 

  6. Carmeliet P. Mechanism of angiogenesis and arteriogenesis. Nat Med 2000;6:389–95

    Article  PubMed  CAS  Google Scholar 

  7. Wang G, Jiang B-H, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995;92:5510–14

    PubMed  CAS  Google Scholar 

  8. Bruick R, McKnight S. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337–40

    Article  PubMed  CAS  Google Scholar 

  9. Forsythe J, Jiang B, Lyer N et al. Activation of vascular endothelial growth factor gene transription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–13

    PubMed  CAS  Google Scholar 

  10. Yamakawa M, Liu L, Date T et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 2003;93:664–73

    Article  PubMed  CAS  Google Scholar 

  11. Kelly B, Hackett S, Hirota K et al. Cell type-specific regulation of angiogenic growth factor gne expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003;93:1074–81

    Article  PubMed  CAS  Google Scholar 

  12. Pugh C, Ratcliffe P. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9:677–84

    Article  PubMed  CAS  Google Scholar 

  13. Hellwig-Burgel T, Rutkowski K, Metzen E et al. Interleukin-1 beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999;94:1561–7

    PubMed  CAS  Google Scholar 

  14. Zhou J, Schmid T, Brune B. Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1 alpha through a nuclear factor-kappaB-dependent pathway. Mol Biol Cell 2003;14:2216–25

    Article  PubMed  CAS  Google Scholar 

  15. Jung Y, Issacs J, Lee S et al. IL-1 beta-mediating up-regulation of HIF-1 alpha via an NFkappaB/COX2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 2003;17:2115–7

    PubMed  CAS  Google Scholar 

  16. Gao Y, Lecker S, Post M et al. Inhibition of ubiquitin-proteasome pathway-mediated IkBα degradation by naturally occuring antibacterial peptide. J Clin Invest 2000;106:439–48

    PubMed  CAS  Google Scholar 

  17. Helish A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation 2003;10:83–97

    Article  PubMed  Google Scholar 

  18. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 2003;23:1143–51

    Article  PubMed  CAS  Google Scholar 

  19. Kondoh K, Koyama H, Miyata T et al. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc Res. 2004;61:132–42

    Article  PubMed  CAS  Google Scholar 

  20. Heil M, Schaper W. Influence of mechanical, celular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 2004;95:449–58

    PubMed  CAS  Google Scholar 

  21. Babiak A, Schumm AM, Wangler C, Loukas M, Wu J, Dombrowski S, et al (2004) Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovasc Res 61(4):789–95

    Article  PubMed  CAS  Google Scholar 

  22. Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation 2003;107:2213–20

    Article  PubMed  Google Scholar 

  23. Schultz A, Lavie L, Hochberg I, Beyar R, Stone T, Skorecki K, et al. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 1999;100:547–52

    PubMed  CAS  Google Scholar 

  24. van Royen N, Voskuil M, Hoefer I, Jost M, de Graaf S, Hedwig F, et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation 2004;109:1647–52

    Article  PubMed  CAS  Google Scholar 

  25. Panchal V, Rehman J, Nguyen A, Brown J, Turrentine M, Mahomed Y, et al. Reduced pericardial levels of endostatin correlate with collateral development in patients with ischemic heart disease. J Am Coll Cardiol 2004;43:1383–7

    Article  PubMed  CAS  Google Scholar 

  26. Hochberg I, Roguin A, Nikolsky E, Chanderashekhar P, Cohen S, Levy A. Haptoglobin phenotype and coronary artery collaterals in diabetic patients. Atherosclerosis 2002;161:441–6

    Article  PubMed  CAS  Google Scholar 

  27. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–7

    Article  PubMed  CAS  Google Scholar 

  28. Shi Q, Rafii S, Wu M, Wijelath E, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362–67

    PubMed  CAS  Google Scholar 

  29. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–8

    PubMed  CAS  Google Scholar 

  30. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 2004;287:C572–C579

    Article  PubMed  CAS  Google Scholar 

  31. Luttun A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovasc Res. 2003;58:378–89

    Article  PubMed  CAS  Google Scholar 

  32. Peichev M, Naiyer A, Pereira D, Ahu Z, Lane W, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 2000;95:952–8

    PubMed  CAS  Google Scholar 

  33. Jackson K, Majka S, Wang H, Pocius J, Hartley C, Majesky M, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–402

    PubMed  CAS  Google Scholar 

  34. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker P, Verfaillie M. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109:337–46

    Article  PubMed  CAS  Google Scholar 

  35. Jiang Y, Yahagirdar B, Reinhardt R, Schwartz R, Keene C, Ortiz-Gonzales X, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9

    Article  PubMed  CAS  Google Scholar 

  36. Gill M, Dias S, Hattori K, Rivera M, Hicklin D, Witte L, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ Res 2001;88:167–74

    PubMed  CAS  Google Scholar 

  37. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001;103:2776–9

    PubMed  CAS  Google Scholar 

  38. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;4:434–8

    Google Scholar 

  39. Gehling U, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000;95:3106–12

    PubMed  CAS  Google Scholar 

  40. Hattori K, Dias S, Heissig B, Hackett N, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoientin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193:1005–14

    Article  PubMed  CAS  Google Scholar 

  41. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:1364–72

    Article  Google Scholar 

  42. Kalka C, Masuda H, Takahashi T, Kalka-Moll W, Silver M, Kearney M, et al. Transplantation of ex-vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000;97:3422–27

    Article  PubMed  CAS  Google Scholar 

  43. Kawamoto A, Gwon H, Ywaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitors cells for myocardial ischemia. Circulation 2001;103:634–37

    PubMed  CAS  Google Scholar 

  44. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokine. Circulation 2001;104:1046–52

    PubMed  CAS  Google Scholar 

  45. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5

    Article  PubMed  CAS  Google Scholar 

  46. Fuchs S, Baffour R, Zhou Y, Shou M, Pierre A, Tio F, et al. Transendocardial deliver of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726–32

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi T, Hamano K, Li T, Katoh T, Kobayashi S, Matsuzaki M, et al. Enhancement of angiogenesis by the implantation of self bone marroe cells in a rat ischemic heart model. J Surg Res 2000;89:189–95

    Article  PubMed  CAS  Google Scholar 

  48. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helish A, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004;94:230–8

    Article  PubMed  CAS  Google Scholar 

  49. Urbich C, Dimmeler S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ Res 2004;95:343–53

    Article  PubMed  CAS  Google Scholar 

  50. Kinnaird T, Stabile E, Burnett M, Epstein S. Bone marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 2004;95:354–63

    Article  PubMed  CAS  Google Scholar 

  51. Yamaguchi JI, Kusano K, Masuo O, Kawamoto A, Silver M, Murasawa S, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003;107:1322–8

    Article  PubMed  CAS  Google Scholar 

  52. Veikkola T, Alitalo K. VEGFs, recetors and angiogenesis. Sem Cancer Biol 1999;9:211–20

    Article  CAS  Google Scholar 

  53. Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 1999;5:495–502

    Article  PubMed  CAS  Google Scholar 

  54. Shalaby F, Rossant J, Yamaguchi TP, Gersenstein M, Wu X, Breitman M, et al. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376:62–6

    Article  PubMed  CAS  Google Scholar 

  55. Fong G-H, Zhang L, Bryce D-M, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999;126:3015–25

    PubMed  CAS  Google Scholar 

  56. Dumont D, Jussila L, Taipale J, Mustonen T, Pajusola K, Breitman M, et al. Cardiovascular failure in mouse embryos defcient in VEGF receptor-3. Science 1998;282:946–49

    Article  PubMed  CAS  Google Scholar 

  57. Henry T, Rocha-Singh K, Isner J, Kereiakes D, Giordano F, Simons M, et al. Intracoronary administration of recombonant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J 2001;148:872–80

    Article  Google Scholar 

  58. Hendel R, Henry T, Rocha-Singh K, Isner J, Kereiakes D, Giordano F, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000;101:118–21

    PubMed  CAS  Google Scholar 

  59. Henry T, Annex B, McKendall G, Azrin M, Lopez J, Giordano F, et al. The VIVA Trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 2003;107:1359–65

    Article  PubMed  CAS  Google Scholar 

  60. Symes J, Losordo D, Vale P, Lathi K, Esakof D, Maysky M, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999;68:830–7

    Article  PubMed  CAS  Google Scholar 

  61. Vale P, Losordo D, Milliken C, Maysky M, Esakof D, Symes J, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000;102:965–74

    PubMed  CAS  Google Scholar 

  62. Vale P, Losordo D, Milliken C, McDonald M, Gravelin L, Curry C, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventrucular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–43

    PubMed  CAS  Google Scholar 

  63. Losordo D, Vale P, Hendel R, Milliken C, Fortuin F, Cummings N, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105:2012–18

    Article  PubMed  CAS  Google Scholar 

  64. Fortuin F, Vale P, Losordo D, Symes J, DeLaria G, Tyner J, et al. One-year follow-up of direct myocardial gene transfer of vascular endohelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoractomy in no-option patients. Am J Cardiol 2003;92:436–9

    Article  PubMed  CAS  Google Scholar 

  65. Rosengart T, Lee L, Patel S, Sanborn T, Parikh M, Bergman G, et al. Angiogenesis gene therapy. Phase I assessement of direct intramyocardial administration of an adenovirus vector expressing VEGF121cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468–74

    PubMed  CAS  Google Scholar 

  66. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, A. K, et al (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in treatment of chronic myocardial ischemia Phase II results of the Kuopio Angiogenesis Trial KAT). Circulation 107:2677–83

    Article  PubMed  CAS  Google Scholar 

  67. Kalka C, Tehrani H, Laudenberg B, Vale P, Isner J, Asahara T, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 2000;70:829–34

    Article  PubMed  CAS  Google Scholar 

  68. Couchman J. Syndecans: proteoglycan regulators of cell-surface microdomains. Nature 2003;4:926–37

    CAS  Google Scholar 

  69. Detillieux K, Sheikh F, Kardami E, Cattini P. Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res. 2003;57:8–19

    Article  PubMed  CAS  Google Scholar 

  70. Laham R, Selke F, Edelman E, Pearlman J, Ware A, Brown J, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery. Results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100:1865–71

    PubMed  CAS  Google Scholar 

  71. Ruel M, Laham R, Parker J, Post M, Ware A, Simons M, et al. Long-term effects of surgical aniogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg 2002;124:28–34

    Article  PubMed  CAS  Google Scholar 

  72. Unger E, Goncalves L, Epstein S, Chew E, Trapnell C, Cannon III R, et al. Effects of a single intracoronary injection of gasic fibroblast growth factor in stable angina pectoris. Am J Cardiol 2000;85:1414–19

    Article  PubMed  CAS  Google Scholar 

  73. Laham R, Chronos N, Pike M, Leimbach M, Udelson J, Pearlman J, et al. Intracoronary basic fibroblast growth factor FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 2000;36:2132–9

    Article  PubMed  CAS  Google Scholar 

  74. Udelson JE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation 2000;102:1605–10

    PubMed  CAS  Google Scholar 

  75. Simons M, Annex B, Laham R, Kleiman N, Henry T, Dauerman H, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 2002;105:788–93

    Article  PubMed  CAS  Google Scholar 

  76. Grines C, Watkins M, Helmer G, Penny W, Brinker J, Marmur J, et al. Angiogenic gene therapy (AGENT trial in patients with stable angina pectoris. Circulation 2002;2002:1291–97

    Article  CAS  Google Scholar 

  77. Grines C, Rubany G, Kleiman N, Marrott P, Watkins M (2003) Angiogenic gene therapy with adenovirus 5 fibrobast growth factor-4 Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92(suppl):24–31

    Article  PubMed  CAS  Google Scholar 

  78. Hamano K, Nishida M, Hirata K, Mikamo A, Li T-S, Harada M, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis. Jpn Circ J 2001;65:845–7

    Article  PubMed  CAS  Google Scholar 

  79. Stamm C, Westphal B, Kleine H-D, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–6

    Article  PubMed  Google Scholar 

  80. Strauer B, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg R, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in human. Circulation 2002;106:1913–18

    Article  PubMed  Google Scholar 

  81. Tse H-F, Kwong Y-L, Chan J, Lo G, Ho C-L, Lau C-P. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47–9

    Article  PubMed  Google Scholar 

  82. . Fuchs S, Satler L, Kornowski R, Okubagzi P, Weisz G, Baffour R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease. J Am Coll Cardiol 2003;41:1721–4

    Article  PubMed  Google Scholar 

  83. Perin E, Dohman H, Borojevic R, Silva S, Sousa A, Mesquita C, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302

    Article  PubMed  Google Scholar 

  84. Perin E, Dohman H, Borojevic R et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004; 10(Suppl II): II213–8

    Google Scholar 

  85. . Fernandez-Aviles F, San Roman J, Garcia-Frade J, Fernandez M, Penarrubia M, de la Fuente L, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004;95:742–8

    Article  PubMed  CAS  Google Scholar 

  86. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI. Circulation 2002;106:3009–3017

    Article  PubMed  Google Scholar 

  87. Schachinger V, Assmus B, Britten M, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004;44:1690–9

    Article  PubMed  Google Scholar 

  88. Britten M, Abolmaali N, Assmus B, Lehmann R, Honold J, Schmitt J, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction TOPCARE-AMI). Mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003;108:2212–18

    Article  PubMed  CAS  Google Scholar 

  89. Wollert KC, Meyer G, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–48

    Article  PubMed  Google Scholar 

  90. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter D, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004;109:1615–22

    Article  PubMed  Google Scholar 

  91. Moore M, Hattori K, Heissig B, Shieh J, Dias S, Crystal R, et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoientin-1. Ann N/Y Acad Sci 2001;938:36–45

    Article  PubMed  CAS  Google Scholar 

  92. Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y, et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. Faseb J 2004;18:851–3

    PubMed  CAS  Google Scholar 

  93. Norol F, Merlet P, Isnard R, Sebillon P, Bonnet N, Cailliot C, et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 2003;102:4361–8

    Article  PubMed  CAS  Google Scholar 

  94. Kang H-J, Kim H-S, Zhang S-Y, Park K-W, Cho H-J, Koo B-K, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751–56

    Article  PubMed  CAS  Google Scholar 

  95. Maekawa Y, Anzai T, Yoshikawa T, Sugano Y, Mahara K, Kohno T, et al. Effect of granulocyte-macrophage colony-stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2004;44:1510–20

    Article  PubMed  CAS  Google Scholar 

  96. Lew W. Mobilizing cells to the injured myocardium. Editorial comment. J Am Coll Cardiol 2004;44:1521–2

    Article  PubMed  Google Scholar 

  97. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet P-A, Windecker S, et al. Promotional of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 2001;104:2012–7

    PubMed  CAS  Google Scholar 

  98. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340–6

    Article  PubMed  CAS  Google Scholar 

  99. Bahlmann F, de Groot K, Spandau J-M, Landry A, Hertel B, Duckert T, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921–6

    Article  PubMed  CAS  Google Scholar 

  100. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest. 2001;108:399–405

    Article  PubMed  CAS  Google Scholar 

  101. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher A, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001;103:2885–90

    PubMed  CAS  Google Scholar 

  102. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, et al. HMG-CoA reductase inhibitors (statins increase endothelial progenitor cells via PI3-kinase/Akt pathway. J Clin Invest 2001;108:391–7

    Article  PubMed  CAS  Google Scholar 

  103. Assmus B, Urbich C, Aicher A, Hofmann W-K, Haendeler J, Rossig L, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003;92:1049–55

    Article  PubMed  CAS  Google Scholar 

  104. Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell population and diminishes neointima formation. Circulation 2003;107:3059–65

    Article  PubMed  CAS  Google Scholar 

  105. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Aikawa R, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 2003;108:3115–21

    Article  PubMed  CAS  Google Scholar 

  106. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370–6

    Article  PubMed  CAS  Google Scholar 

  107. Luttun A, Tjwa M, Carmeliet P. Placental growth factor (PIGF) and its receptor Flt-1 (VEGFR-1); novel therapeutic targets for angiogenic disorders. Ann N/Y Acad Sci 2002;979:80–93

    Article  CAS  Google Scholar 

  108. Takahashi T, Ito Y, Morikawa M, Kobune M, Huang J, Tsukamoto M, et al. Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction. Mol Therapy 2003;8:584–92

    Article  PubMed  CAS  Google Scholar 

  109. Su E, Cioffi C, Stefansson S, Mittereder N, Garay M, Hreniuk D, et al. Gene therapy vector-mediated expression of insulin-like growth factors protects cardiomyocytes from apoptosis and enhances. Am J Physiol Heart Circ Physiol 2003;284:H1429-H1440

    PubMed  CAS  Google Scholar 

  110. Rutanen J, Rissanen T, Markkanen J, Gruchala M, Silvennoinen P, Kivela A, et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces trasmural angiogenesis in porcine heart. Circulation 2004;109:1029–35

    Article  PubMed  CAS  Google Scholar 

  111. Shyu K-G, Wang M-T, Wang B-W, Chang C-C, Leu J-G, Kuan P, et al. Intramyocardial injection of naked DNA encoding HIF-1 α/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002;54:576–83

    Article  PubMed  CAS  Google Scholar 

  112. Jayasankar V, Woo J, Bish L, Pirolli T, Chatterjee S, Berry M, et al. (2003) Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 108(suppl II):II-230-II-236

    Article  PubMed  CAS  Google Scholar 

  113. Wang Y, Ahmad N, Wani M, Ashraf M. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 2004;37:1041–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Simons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirziu, D., Simons, M. Angiogenesis in the human heart: Gene and cell therapy. Angiogenesis 8, 241–251 (2005). https://doi.org/10.1007/s10456-005-9011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9011-z

Keywords

Navigation