Skip to main content

Advertisement

Log in

Anti-migratory and anti-angiogenic effect of p16: A novel localization at membrane ruffles and lamellipodia in endothelial cells

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Recent evidence has established different functions for the tumor suppressor protein, p16INK4A aside from controlling the cell cycle. Here we report that cdk4/6 inhibition blocked both human umbilical vein endothelial cells (HUVEC) spreading on a vitronectin matrix and HUVEC migration on vitronectin. p16 can also act as an anti-angiogenic molecule in vitro since HUVEC and HMEC cells transfected with Ad-p16 or treated with Antennapedia p16 peptides are unable to differentiate on a Matrigel matrix. Both, p16, cyclin D1, cdk4 and cdk6 were immuno-colocalized with Ezrin, Rac, Vinculin, αv-integrin, and FAK proteins in the ruffles and lamellipodia of migratory cells. Our results indicate that p16 is a key component of a new cytoplasmic pathway controlling angiogenesis of endothelial cells via the αvβ3-integrin-mediated migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Folkman (1995) ArticleTitleAngiogenesis in cancer, vascular, rheumatoid and other disease Nat Med 1 27–31 Occurrence Handle1:CAS:528:DyaK2MXjs1KnsLk%3D Occurrence Handle7584949

    CAS  PubMed  Google Scholar 

  2. M Serrano GJ Hannon D Beach (1993) ArticleTitleA new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 Nature 366 704–707 Occurrence Handle10.1038/366704a0 Occurrence Handle1:CAS:528:DyaK2cXhsFOgu7Y%3D Occurrence Handle8259215

    Article  CAS  PubMed  Google Scholar 

  3. J Lukas D Parry L Aagaard et al. (1995) ArticleTitleRetinoblastoma-protein-dependent cell-cycle inhibition by the tumor suppressor p16 Nature 375 503–506 Occurrence Handle10.1038/375503a0 Occurrence Handle1:CAS:528:DyaK2MXmtFCgsbw%3D Occurrence Handle7777060

    Article  CAS  PubMed  Google Scholar 

  4. M Schreiber WJ Muller G Singh FL Graham (1999) ArticleTitleComparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity Oncogene 18 1663–1676 Occurrence Handle10.1038/sj.onc.1202466 Occurrence Handle1:CAS:528:DyaK1MXitVaktLs%3D Occurrence Handle10208428

    Article  CAS  PubMed  Google Scholar 

  5. SP Frizelle J Grim J Zhou et al. (1998) ArticleTitleRe-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression Oncogene 16 3087–3095 Occurrence Handle10.1038/sj.onc.1201870 Occurrence Handle1:CAS:528:DyaK1cXkt1Omtbc%3D Occurrence Handle9671387

    Article  CAS  PubMed  Google Scholar 

  6. P Ghaneh W Greenhalf M Humphreys et al. (2001) ArticleTitleAdenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitroand in vivo Gene Ther 8 199–208 Occurrence Handle10.1038/sj.gt.3301394 Occurrence Handle1:CAS:528:DC%2BD3MXht1GmtLY%3D Occurrence Handle11313791

    Article  CAS  PubMed  Google Scholar 

  7. J Calbo M Marotta M Cascallo et al. (2001) ArticleTitleAdenovirus-mediated wt-p16 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer Cancer Gene Ther 8 740–750 Occurrence Handle10.1038/sj.cgt.7700374 Occurrence Handle1:CAS:528:DC%2BD3MXnvVejsbg%3D Occurrence Handle11687897

    Article  CAS  PubMed  Google Scholar 

  8. M Serrano AW Lin ME McCurrach et al. (1997) ArticleTitleOncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a Cell 88 593–602 Occurrence Handle10.1016/S0092-8674(00)81902-9 Occurrence Handle1:CAS:528:DyaK2sXhvVSit7k%3D Occurrence Handle9054499

    Article  CAS  PubMed  Google Scholar 

  9. C Craig M Kim E Ohri et al. (1998) ArticleTitleEffects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells Oncogene 16 265–272 Occurrence Handle10.1038/sj.onc.1201493 Occurrence Handle1:CAS:528:DyaK1cXmsV2ltA%3D%3D Occurrence Handle9464545

    Article  CAS  PubMed  Google Scholar 

  10. MS Steiner Y Zhang F Farooq et al. (2000) ArticleTitleAdenoviral vector containing wild-type p16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence Cancer Gene Ther 7 360–372 Occurrence Handle10.1038/sj.cgt.7700151 Occurrence Handle1:CAS:528:DC%2BD3cXisV2iurY%3D Occurrence Handle10766342

    Article  CAS  PubMed  Google Scholar 

  11. SK Chintala J Fueyo C Gomez-Manzano et al. (1997) ArticleTitleAdenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro Oncogene 15 2049–2057 Occurrence Handle10.1038/sj.onc.1201382 Occurrence Handle1:CAS:528:DyaK2sXnt1Ghtbw%3D Occurrence Handle9366522

    Article  CAS  PubMed  Google Scholar 

  12. H Harada K Nakagawa S Iwata et al. (1999) ArticleTitleRestoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas Cancer Res 59 3783–3789 Occurrence Handle1:CAS:528:DyaK1MXltFCns7w%3D Occurrence Handle10446996

    CAS  PubMed  Google Scholar 

  13. R Fahraeus DP Lane (1999) ArticleTitleThe p16(INK4a) tumor suppressor protein inhibits alphavbeta3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts EMBO J 18 2106–2118 Occurrence Handle10.1093/emboj/18.8.2106 Occurrence Handle1:CAS:528:DyaK1MXivVOnu7o%3D Occurrence Handle10205165

    Article  CAS  PubMed  Google Scholar 

  14. Y Adachi SS Lakka N Chandrasekar et al. (2001) ArticleTitleDown-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes J Biol Chem 276 47171–47177 Occurrence Handle10.1074/jbc.M104334200 Occurrence Handle1:CAS:528:DC%2BD3MXpt1Gntbo%3D Occurrence Handle11572856

    Article  CAS  PubMed  Google Scholar 

  15. ML Matter E Ruoslahti (2001) ArticleTitleA signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription J Biol Chem 276 27757–27763 Occurrence Handle10.1074/jbc.M102014200 Occurrence Handle1:CAS:528:DC%2BD3MXls1Sktbo%3D Occurrence Handle11333270

    Article  CAS  PubMed  Google Scholar 

  16. K Burridge M Chrzanowska-Wodnicka (1996) ArticleTitleFocal adhesions, contractility, and signaling Annu Rev Cell Dev Biol 12 463–518 Occurrence Handle10.1146/annurev.cellbio.12.1.463 Occurrence Handle1:CAS:528:DyaK28XnsFCltrc%3D Occurrence Handle8970735

    Article  CAS  PubMed  Google Scholar 

  17. BP Eliceiri DA Cheresh (2000) ArticleTitleRole of alpha v integrins during angiogenesis Cancer J 6 IssueIDSuppl 3 S245–S249 Occurrence Handle10874494

    PubMed  Google Scholar 

  18. PC Brooks RA Clark DA Cheresh (1994) ArticleTitleRequirement of vascular integrin alpha v beta 3 for angiogenesis Science 264 569–571 Occurrence Handle1:CAS:528:DyaK2cXjt1Sis7w%3D Occurrence Handle7512751

    CAS  PubMed  Google Scholar 

  19. JE Nor J Christensen DJ Mooney PJ Polverini (1999) ArticleTitleVascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression Am J Pathol 154 375–384 Occurrence Handle1:CAS:528:DyaK1MXjtVCqsbk%3D Occurrence Handle10027396

    CAS  PubMed  Google Scholar 

  20. DS O’Connor JS Schechner C Adida et al. (2000) ArticleTitleControl of apoptosis during angiogenesis by survivin expression in endothelial cells Am J Pathol 156 393–398 Occurrence Handle1:CAS:528:DC%2BD3cXhtlGgur8%3D Occurrence Handle10666367

    CAS  PubMed  Google Scholar 

  21. J Muhlhauser MJ Merrill R Pili et al. (1995) ArticleTitleVEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo Circ Res 77 1077–1086 Occurrence Handle1:CAS:528:DyaK2MXpsFCitrs%3D Occurrence Handle7586219

    CAS  PubMed  Google Scholar 

  22. D Derossi AH Joliot G Chassaing A Prochiantz (1994) ArticleTitleThe third helix of the Antennapedia homeodomain translocates through biological membranes J Biol Chem 269 10444–10550 Occurrence Handle1:CAS:528:DyaK2cXlt1Oqt7Y%3D Occurrence Handle8144628

    CAS  PubMed  Google Scholar 

  23. F Mitjans T Meyer C Fittschen et al. (2000) ArticleTitleIn vivotherapy of malignant melanoma by means of antagonists of alphav integrins Int J Cancer 87 716–723 Occurrence Handle10.1002/1097-0215(20000901)87:5<716::AID-IJC14>3.3.CO;2-I Occurrence Handle1:CAS:528:DC%2BD3cXlvFahurs%3D Occurrence Handle10925366

    Article  CAS  PubMed  Google Scholar 

  24. SL Gibson CY Dai HW Lee et al. (2003) ArticleTitleInhibition of colon tumor progression and angiogenesis by the Ink4a/Arf locus Cancer Res 63 742–746 Occurrence Handle1:CAS:528:DC%2BD3sXht1Gqsro%3D Occurrence Handle12591718

    CAS  PubMed  Google Scholar 

  25. J Wang K Walsh (1996) ArticleTitleResistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation Science 273 359–361 Occurrence Handle1:CAS:528:DyaK28Xktl2is7w%3D Occurrence Handle8662523 Occurrence HandleMR1434469

    CAS  PubMed  MathSciNet  Google Scholar 

  26. D Mahony DA Parry E Lees (1998) ArticleTitleActive cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells Oncogene 16 603–611 Occurrence Handle10.1038/sj.onc.1201570 Occurrence Handle1:CAS:528:DyaK1cXht1ajsbc%3D Occurrence Handle9482106

    Article  CAS  PubMed  Google Scholar 

  27. TK Kwon MA Buchholz EW Gabrielson AA Nordin (1995) ArticleTitleA novel cytoplasmic substrate for cdk4 and cdk6 in normal and malignant epithelial derived cells Oncogene 11 2077–2083 Occurrence Handle1:CAS:528:DyaK2MXpslaktbw%3D Occurrence Handle7478527

    CAS  PubMed  Google Scholar 

  28. A Hall (1994) ArticleTitleSmall GTP-binding proteins and the regulation of the actin cytoskeleton Annu Rev Cell Biol 10 31–54 Occurrence Handle10.1146/annurev.cb.10.110194.000335 Occurrence Handle1:CAS:528:DyaK2MXitlSnsL8%3D Occurrence Handle7888179

    Article  CAS  PubMed  Google Scholar 

  29. AJ Ridley (1997) ArticleTitleThe GTP-binding protein Rho Int J Biochem Cell Biol 29 1225–1229 Occurrence Handle10.1016/S1357-2725(97)00052-6 Occurrence Handle1:CAS:528:DyaK1cXltFejsA%3D%3D Occurrence Handle9451818

    Article  CAS  PubMed  Google Scholar 

  30. A Hall (1998) ArticleTitleRho GTPases and the actin cytoskeleton Science 279 509–514 Occurrence Handle10.1126/science.279.5350.509 Occurrence Handle1:CAS:528:DyaK1cXotVKrsQ%3D%3D Occurrence Handle9438836

    Article  CAS  PubMed  Google Scholar 

  31. AJ Ridley A Hall (1994) ArticleTitleSignal transduction pathways regulating rho-mediated stress fibre formation: Requirement for a tyrosine kinase EMBO J 13 2600–2610 Occurrence Handle1:CAS:528:DyaK2cXksl2hs7k%3D Occurrence Handle7516876

    CAS  PubMed  Google Scholar 

  32. AJ Ridley A Hall (1992) ArticleTitleThe small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors Cell 70 389–399 Occurrence Handle10.1016/0092-8674(92)90163-7 Occurrence Handle1:CAS:528:DyaK38XlsVyisro%3D Occurrence Handle1643657

    Article  CAS  PubMed  Google Scholar 

  33. CD Nobes A Hall (1995) ArticleTitleRho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia Cell 81 53–62 Occurrence Handle10.1016/0092-8674(95)90370-4 Occurrence Handle1:CAS:528:DyaK2MXkvFOisrs%3D Occurrence Handle7536630

    Article  CAS  PubMed  Google Scholar 

  34. JK Westwick QT Lambert GJ Clark et al. (1997) ArticleTitleRac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways Mol Cell Biol 17 1324–1335 Occurrence Handle1:CAS:528:DyaK2sXhtlGgsbY%3D Occurrence Handle9032259

    CAS  PubMed  Google Scholar 

  35. D Joyce B Bouzahzah M Fu et al. (1999) ArticleTitleIntegration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway J Biol Chem 274 25245–25249 Occurrence Handle10.1074/jbc.274.36.25245 Occurrence Handle1:CAS:528:DyaK1MXmtVWit7c%3D Occurrence Handle10464245

    Article  CAS  PubMed  Google Scholar 

  36. O Gjoerup J Lukas J Bartek BM Willumsen (1998) ArticleTitleRac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation J. Biol Chem 273 18812–18818 Occurrence Handle10.1074/jbc.273.30.18812 Occurrence Handle1:CAS:528:DyaK1cXltFGrsLc%3D Occurrence Handle9668055

    Article  CAS  PubMed  Google Scholar 

  37. JD Weber W Hu SC Jefcoat SuffixJr. et al. (1997) ArticleTitleRas-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27 J Biol Chem 272 32966–32971 Occurrence Handle10.1074/jbc.272.52.32966 Occurrence Handle1:CAS:528:DyaK1cXptlah Occurrence Handle9407076

    Article  CAS  PubMed  Google Scholar 

  38. MF Olson HF Paterson CJ Marshall (1998) ArticleTitleSignals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1 Nature 394 295–299 Occurrence Handle10.1038/28425 Occurrence Handle1:CAS:528:DyaK1cXkvVKisLY%3D Occurrence Handle9685162

    Article  CAS  PubMed  Google Scholar 

  39. CF Welsh K Roovers J Villanueva et al. (2001) ArticleTitleTiming of cyclin D1 expression within G1 phase is controlled by rho Nat Cell Biol 3 950–957 Occurrence Handle10.1038/ncb1101-950 Occurrence Handle1:CAS:528:DC%2BD3MXosVehsrs%3D Occurrence Handle11715015

    Article  CAS  PubMed  Google Scholar 

  40. A Noguchi N Ito H Sawa et al. (2001) ArticleTitlePhenotypic changes associated with exogenous expression of p16INK4a in human glioma cells Brain Tumor Pathol 18 73–81 Occurrence Handle10.1159/000056074 Occurrence Handle1:CAS:528:DC%2BD38Xjs1ertrg%3D Occurrence Handle11908877

    Article  CAS  PubMed  Google Scholar 

  41. WJ Yao Y Liang K Chen et al. (2002) ArticleTitleChanges of biophysical behavior of k562 cells for p16 gene transfer Clin Hemorheol Microcirc 27 177–183 Occurrence Handle1:CAS:528:DC%2BD38XovFyjtL0%3D Occurrence Handle12454374

    CAS  PubMed  Google Scholar 

  42. LV Parise J Lee RL. Juliano (2000) ArticleTitleNew aspects of integrin signaling in cancer Semin Cancer Biol 10 407–414 Occurrence Handle10.1006/scbi.2000.0337 Occurrence Handle1:CAS:528:DC%2BD3MXhtVGhuro%3D Occurrence Handle11170863

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Piulats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alhaja, E., Adan, J., Pagan, R. et al. Anti-migratory and anti-angiogenic effect of p16: A novel localization at membrane ruffles and lamellipodia in endothelial cells. Angiogenesis 7, 323–333 (2004). https://doi.org/10.1007/s10456-005-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-0368-9

Keywords

Navigation