Skip to main content
Log in

Self-similar Hessian and conformally Kähler manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A self-similar Hessian (special Kähler) manifold is a Hessian (special Kähler) manifold \((M,\nabla ,g)\) endowed with an affine (holomorphic) homothetic vector field \(\xi \). Consider an action of a group G on a self-similar Hessian (special Kähler) manifold \((M,\nabla ,g,\xi )\) by affine (holomorphic) isometries preserving \(\xi \) such that G acts on the level set \(\{g(\xi ,\xi )=1\}\) simply transitively. Then, we construct a homogeneous conformally Kähler (hyper Kähler) structure on TM \((T^*M)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data availability statement is not applicable.

References

  1. Alekseevsky, D.V., Cortés, V.: Geometric construction of the r-map: from affine special real to special Kähler manifolds. Comm. Math. Phys. 291, 579–590 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alekseevsky, D.V., Cortés, V., Devchand, C.: Special complex manifolds. J. Geom. Phys. 42(1–2), 85–105 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alekseevsky, D.V., Cortés, V., Hasegawa, K., Kamishima, Y.: Homogeneous locally conformally Kähler and Sasaki manifolds. Int. J. Math. 26, 1541001 (2015)

    Article  Google Scholar 

  4. Alekseevsky, D.V., Hasegawa, K., Kamishima, Y.: Homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, preprint arXiv:1810.01095v1 (2018)

  5. Alekseevsky, D.V., Cortés, V., Mohaupt, T.: Conification of Kähler and hyper-Kähler manifolds. Comm. Math. Phys. 324(2), 637–655 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cortés, V.: Homogeneous special geometry. Transform. Groups 1(4), 337–373 (1996)

    Article  MathSciNet  Google Scholar 

  7. Cortés, V., Dieterich, P.-S., Mohaupt, T.: ASK/PSK-correspondence and the r-map. Lett. Math. Phys. 108(5), 1279–1306 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cortez, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of euclidean supersymmetry I: vector multiplets. J. High Energy Phys. 03, 28 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cortez, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry II: hypermultiplets and the c-map. J. High Energy Phys. 06, 025 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cortez, V., Mohaupt, T.: Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes. J. High Energy Phys. 66(7), 66 (2009)

    Article  MathSciNet  Google Scholar 

  11. Figalli, A.: On the Monge-Ampère equation, 70e annee, no 1147 (2018)

  12. Figalli, A.: The Monge-Ampère equation and its applications, EMS Zurich Lect. Adv. Math. 22, 210(2017)

  13. Fried, D., Goldman, W., Hirsch, M.: Affine manifolds with nilpotent holonomy. Comment. Math. Helvetici 56, 487–523 (1981)

    Article  MathSciNet  Google Scholar 

  14. Goldman, W. M.: Projective geometry on manifolds, lecture Notes, Spring, University of Maryland (1988)

  15. Gutierrez, C.: The Monge-Ampère equation, progress in nonlinear differential equations and their applications, vol. 44. Birkhäuser, Boston (2016)

    Google Scholar 

  16. Hasegawa, K., Kamishima, Y.: Locally conformally Kähler structures on homogeneous spaces. Geometry Anal. Manifolds Prog. Math. 308, 353–372 (2015)

    Article  Google Scholar 

  17. Nemirovski, A.: Advances in convex optimization: conic programming, Plenary Lecture, International Congress of Mathematicians. ICM), Madrid, Spain (2006)

  18. Nesterov, Y., Nemirovski, A.: Interior-point polynomial algorithms in convex programming SIAM Studies in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

  19. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

    Book  Google Scholar 

  20. Totaro, B.: The curvature of a Hessian metric. Int. J. Math. 5(4), 369–391 (2004)

    Article  MathSciNet  Google Scholar 

  21. Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Moscow Math. Soc. 12, 340–403 (1963)

    MATH  Google Scholar 

  22. Vinberg, E.B., Gindikin, S.G., Piatetskii-Shapiro, I.I.: Classification and canonical realization of complex homogeneous domains. Trans. Moscow Math. Soc. 12, 404–437 (1963)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Osipov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article was prepared within the framework of the HSE University Basic Research Program and the contest “Young Russian Mathematics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, P. Self-similar Hessian and conformally Kähler manifolds. Ann Glob Anal Geom 62, 479–488 (2022). https://doi.org/10.1007/s10455-022-09861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-022-09861-1

Navigation