Skip to main content
Log in

Sharp upper diameter bounds for compact shrinking Ricci solitons

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a sharp upper diameter bound for a compact shrinking Ricci soliton in terms of its scalar curvature integral and the Perelman’s entropy functional. The sharp cases could occur at round spheres. The proof mainly relies on a sharp logarithmic Sobolev inequality of gradient shrinking Ricci solitons and a Vitali-type covering argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B., Ni, L.: Eigenvalue comparison on Bakry-Emery manifolds. Comm. Partial Differential Equations 37, 2081–2092 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Emery, M.: Diffusion hypercontractivitives, in Séminaire de Probabilités XIX, 1983/1984, in: Lecture Notes in Math., vol. 1123, Springer-Verlag, Berlin, 177-206 (1985)

  3. Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85, 253–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakry, D., Qian, Z.-M.: Volume comparison theorems without Jacobi fields in current trends in petential theory, Theta Series in Advanced Mathematics, vol. 4, pp. 155–122. Bucharest, Theta (2005)

    Google Scholar 

  5. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. of Math. 167, 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, H.-D.: Existence of gradient Kähler-Ricci solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, : A K Peters, 0. 1996, 1–16 (1994)

  7. Cao, H.,-D.: Geometry of complete gradient shrinking Ricci solitons, in: Geometry and Analysis, vol. 1, in: Adv. Lectures Math., vol. 17, 227-246 (2011)

  8. Cao, H.,-D., Chen, B.,-L., Zhu, X.,-P.: Recent developments on Hamilton’s Ricci flow, Surveys in differential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom., vol. 12, Int. Press, Somerville, MA, 47-112 (2008)

  9. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162, 1149–1169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, H.-D., Zhou, D.-T.: On complete gradient shrinking Ricci solitons. J. Diff. Geom. 85, 175–186 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cao, X.-D., Tran, H.: The Weyl tensor of gradient Ricci solitons. Geom. Topol. 20, 389–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrillo, J., Ni, L.: Sharp logarithmic Sobolev inequalities on gradient solitons and applications. Comm. Anal. Geom. 17, 721–753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cation, G.: Complete gradient shrinking Ricci solitons with pinched curvature. Math. Ann. 35, 629–635 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Cation, G.: Integral pinched shrinking Ricci solitons. Adv. Math. 303, 279–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Diff. Geom. 82, 363–382 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Chen, X.-X., Wang, Y.-Q.: On four-dimensional anti-self-dual gradient Ricci solitons. J Geom. Anal. 25, 1335–1343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Derdziński, A.: A Myers-type theorem and compact Ricci solitons. Proc. Am. Math. Soc. 134, 3645–3648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernández-López, M., García-Río, E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fernández-López, M., García-Río, E.: Diameter bounds and Hitchin-Thorpe inequalities for compact Ricci solitons. Q. J. Math. 61, 319–327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fernández-López, M., García-Río, E.: Rigidity of shrinking Ricci solitons. Math. Z. 269, 461–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández-López, M., García-Río, E.: Some gap theorems for gradient Ricci solitons, Internat. J. Math. 23, no. 7, 1250072, 9 pp (2012)

  22. Futaki, A., Li, H.-Z., Li, X.-D.: On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons. Ann. Global Anal. Geom. 44, 105–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Futaki, A., Sano, Y.: Lower diameter bounds for compact shrinking Ricci solitons. Asian J. Math. 17, 17–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamilton, R.: The Ricci flow on surfaces. Contemporary Mathematics 71, 237–261 (1988)

    Article  MathSciNet  Google Scholar 

  25. Hamilton, R.: The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry, International Press, Boston 2, 7–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haslhofer, R., Müller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21, 1091–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ivey, T.: Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3, 301–307 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koiso, N.: On rotationally symmetric Hamiltons equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, pp. 327-337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA (1990)

  29. Li, H.,-Z., Li, Y., Wang, B.: On the structure of Ricci shrinkers, arXiv:1809.04049v1

  30. Li, Y., Wang, B.: Heat kernel on Ricci shrinkers, Calc. Var. 59, Art. 194 (2020)

  31. Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95, 191–199 (2010)

    Article  MathSciNet  Google Scholar 

  32. Limoncu, M.: The Bakry-Emery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23, 539–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Munteanu, O., Wang, J.-P.: Geometry of shrinking Ricci solitons. Compos. Math. 151, 2273–2300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Munteanu, O., Wang, J.-P.: Positively curved shrinking Ricci solitons are compact. J. Diff. Geom. 106, 499–505 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Ni, L., Wallach, N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15, 941–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14, 2277–2300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002), arXiv:math.DG/0211159

  40. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tadano, H.: Remark on a diameter bound for complete Riemannian manifolds with positive Bakry-Émery Ricci curvature. Diff. Geom. Appl. 44, 136–143 (2016)

    Article  MATH  Google Scholar 

  42. Tadano, H.: An upper diameter bound for compact Ricci solitons with application to the Hitchin-Thorpe inequality. J. Math. Phys. 58, 023503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Topping, P.: Diameter control under Ricci flow. Comm. Anal. Geom. 13, 1039–1055 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv. 83, 539–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, X.-J., Zhu, X.-H.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wei, G.-F., Wylie, W.: Comparison geometry for the Bakry-Émery Ricci tensor. J. Diff. Geom. 83, 377–405 (2009)

    MATH  Google Scholar 

  47. Wylie, W.: Complete shrinking Ricci solitons have finite fundamental group. Proc. Amer. Math. Soc. 136, 1803–1806 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, J.-Y.: Myers’ type theorem with the Bakry-Émery Ricci tensor. Ann. Glob. Anal. Geom. 54, 541–549 (2018)

    Article  MATH  Google Scholar 

  49. Wu, J.,-Y., Wu, P., Wylie, W.: Gradient shrinking Ricci solitons of half harmonic Weyl curvature, Calc. Var. PDEs 57, Art. 141 (2018)

  50. Wu, J.-Y., Zheng, Y.: Relating diameter and mean curvature for Riemannian submanifolds. Proc. Amer. Math. Soc. 139, 4097–4104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Qi, S.: Zhang, On the question of diameter bounds in Ricci flow. Illinois J. Math. 58, 113–123 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pacific J. Math. 242, 189–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Peng Wu for helpful discussions. The author also thanks the referee for valuable comments and suggestions, which helped to improve the paper. This work is supported by the NSFC (11671141) and the Natural Science Foundation of Shanghai (17ZR1412800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JY. Sharp upper diameter bounds for compact shrinking Ricci solitons. Ann Glob Anal Geom 60, 19–32 (2021). https://doi.org/10.1007/s10455-021-09764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09764-7

Keywords

Mathematics subject classification

Navigation