Skip to main content
Log in

Resolution of four-dimensional symplectic orbifolds

Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Cite this article


We give a method to resolve four-dimensional symplectic orbifolds making use of techniques from complex geometry and gluing of symplectic forms. We provide some examples to which the resolution method applies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Bazzoni, G., Fernández, M., Muñoz, V.: Non-formal co-symplectic manifolds. Trans. Am. Math. Soc. 367, 4459–4481 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bazzoni, G., Fernández, M., Muñoz, V.: A \(6\)-dimensional simply connected complex and symplectic manifold with no Kähler metric. J. Symplect. Geom. 16(4), 1001–1020 (2018)

    Article  Google Scholar 

  3. Bazzoni, G., Muñoz, V.: Manifolds which are complex and symplectic but not Kähler. In: Rassias, T., Pardalos, P. (eds.) Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, pp. 49–69. Switzerland, Springer (2016)

    Google Scholar 

  4. Bredon, G.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)

    MATH  Google Scholar 

  5. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  6. Cannas da Silva, A.: Lectures on Symplectic Geometry, Lecture Notes in Mathematics. Springer, New York (2001)

  7. Cavalcanti, G., Fernández, M., Muñoz, V.: Symplectic resolutions. Lefschetz property and formality. Adv. Math. 218, 576–599 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chen, W.: Resolving symplectic orbifolds with applications to finite group actions. J. Gökova Geom. Topol. 12 (2018), 1–39

  9. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77(4), 778–782 (1955)

    Article  MathSciNet  Google Scholar 

  10. Fernández, M., Fino, A., Kovalev, A., Muñoz, V.: A compact \(G_2\)-calibrated manifold with first Betti number \(b_1=1\). Adv. Math. (to appear). arxiv:1808.07144

  11. Fernández, M., Muñoz, V.: An \(8\)-dimensional non-formal simply connected symplectic manifold. Ann. Math. 167(2), 1045–1054 (2008)

    Article  MathSciNet  Google Scholar 

  12. Godinho, L.: Blowing-up symplectic orbifolds. Ann. Glob. Anal. Geom. 20, 117–162 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gromov, M.: Partial Differential Relations. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math. 79(2), 109–203 (1964). ibid. 79 (2), (1964), 205–326

    Article  MathSciNet  Google Scholar 

  15. Joyce, D.: Compact Riemannian 7-manifolds with Holonomy. J. Differ. Geom. 43(2), 291–328 (1996)

    Article  MathSciNet  Google Scholar 

  16. Martín-Merchán, L.: A compact non-formal closed \(G_2\) manifold with \(b_1=1\). Math. Nachr. (to appear). arXiv:2005.04924

  17. McCarthy, J., Wolfson, J.: Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities. Invent. Math. 119, 129–154 (1995)

    Article  MathSciNet  Google Scholar 

  18. McDuff, D.: Examples of symplectic simply connected manifolds with no Kähler structure. J. Differ. Geom. 20, 267–277 (1984)

    Article  Google Scholar 

  19. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, Oxford Mathematical Monographs. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  20. Muñoz, V., Rojo, J., Tralle, A.: Homology Samale-Barden manifolds with K-contact but not Sasakian structures. Int. Math. Res. Not. 2020(21), 7397–7432 (2016)

    Article  Google Scholar 

  21. Muñoz, V., Rojo, J.: Symplectic resolution of orbifolds with homogeneous isotropy. Geom. Dedic. 204, 339–363 (2020)

    Article  MathSciNet  Google Scholar 

  22. Niederkrüger, K., Pasquotto, F.: Resolution of symplectic cyclic orbifold singularities. J. Symplect. Geom. 7, 337–355 (2009)

    Article  MathSciNet  Google Scholar 

  23. Niederkrüger, K., Pasquotto, F.: Desingularization of orbifolds obtained from symplectic reduction at generic coadjoint orbits. Int. Math. Res. Not. 23, 4463–4479 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Prill, D.: Local classification of quotients of complex manifolds by discontinuous groups. Duke Math. J. 34(2), 375–386 (1967)

    Article  MathSciNet  Google Scholar 

  25. Rudyak, Y., Tralle, A.: On Thom spaces, Massey products and non-formal symplectic manifolds. IMRN 2000(10), 495–513 (1999)

    Article  Google Scholar 

  26. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42(6), 359–363 (1956)

    Article  MathSciNet  Google Scholar 

  27. Thurston, W.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55(2), 467–468 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Thurston, W.: Three-dimensional geometry and topology. In: Princeton Mathematical Series, 35, vol. 1. Princeton University Press, Princeton (1997)

Download references


We are grateful to Vicente Muñoz and Giovanni Bazzoni for useful conversations. The first author acknowledges financial support by a FPU Grant (FPU16/03475).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lucía Martín-Merchán.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Merchán, L., Rojo, J. Resolution of four-dimensional symplectic orbifolds. Ann Glob Anal Geom 59, 385–416 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification