Skip to main content
Log in

\(L^p\) harmonic 1-forms on totally real submanifolds in a complex projective space

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let \(\pi : {\mathbb {S}}^{2n+1}\rightarrow {\mathbb {C}}P^n\) be the Hopf map and let \(\phi\) be a totally real immersion of a \(k(\ge 3)\)-dimensional simply connected manifold \(\Sigma\) into \({\mathbb {C}}P^n\). It is well known that there exists an isotropic lift \({\overline{\phi }}\) into \({\mathbb {S}}^{2n+1}\) preserving the second fundamental form. Using this isotropic lift, we obtain a vanishing theorem for of \(L^{p}\) harmonic 1-forms on a complete noncompact totally real submanifold in a complex projective space provided the \(L^k\) norm of the traceless second fundamental form \(\Phi\) is sufficiently small. Moreover, we prove that if the \(L^k\) norm of \(\Phi\) is finite, then the dimension of \(L^p\) harmonic 1-forms on a complete noncompact totally real submanifold in a complex projective space is finite. As consequences, we obtain a vanishing theorem and a finiteness result for \(L^2\) harmonic 1-forms on a complete noncompact minimal Lagrangian submanifold in a complex projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, W.: On the first variation of a varifoldd. Ann. Math. (2) 95, 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.T.: \(L^2\) harmonic forms on complete Riemannian manifolds. In: Sunada, T. (ed.) Geometry and Analysis on Manifolds. Lecture Notes in Mathematics, vol. 1339. Springer, Berlin (1988)

    Chapter  Google Scholar 

  3. Besse, A.L.: Einstein manifolds, Reprint of the 1987 edition. Classics in Mathematics. Springer, Berlin (2008)

  4. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  5. Cao, H., Shen, Y., Zhu, S.: The structure of stable minimal hypersurfaces in \({\mathbb{R}}^{n+1}\). Math. Res. Lett. 4(5), 637–644 (1997)

    Article  MathSciNet  Google Scholar 

  6. Cavalcante, M.P., Mirandola, H., Vitório, F.: \(L^2\) harmonic \(1\)-forms on submanifolds with finite total curvature. J. Geom. Anal. 24(1), 205–222 (2014)

    Article  MathSciNet  Google Scholar 

  7. Choi, H., Seo, K.: \(L^p\) harmonic \(1\)-forms on minimal hypersurfaces with finite index. J. Geom. Phys. 129, 125–132 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dodziuk, J.: \(L^2\) harmonic forms on complete manifolds. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 291–302 (1982)

  9. Dung, N.T., Seo, K.: Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature. Ann. Glob. Anal. Geom. 41(4), 447–460 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dung, N.T., Seo, K.: Vanishing theorems for \(L^2\) harmonic \(1\)-forms on complete submanifolds in a Riemannian manifold. J. Math. Anal. Appl. 423(2), 1594–1609 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gan, W., Zhu, P.: \(L^2\) harmonic \(1\)-forms on minimal submanifolds in spheres. Results Math. 65(3–4), 483–490 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gan, W., Zhu, P., Fang, S.: \(L^2\) harmonic \(2\)-forms on minimal hypersurfaces in spheres. Differ. Geom. Appl. 56, 202–210 (2018)

    Article  Google Scholar 

  13. Han, Y.: The topological structure of complete noncompact submanifolds in spheres. J. Math. Anal. Appl. 457(1), 991–1006 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure Appl. Math. 27, 715–727 (1974)

    Article  MathSciNet  Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I. Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, p. 1996. Wiley, New York (1963)

  16. Leung, P.F.: An estimate on the Ricci curvature of a submanifold and some applications. Proc. Am. Math. Soc. 114(4), 1051–1061 (1992)

    Article  MathSciNet  Google Scholar 

  17. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  18. Li, P.: On the Sobolev constant and the \(p\)-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Super. (4) 13(4), 451–468 (1980)

    Article  MathSciNet  Google Scholar 

  19. Li, P., Wang, J.: Minimal hypersurfaces with finite index. Math. Res. Lett. 9(1), 95–103 (2002)

    Article  MathSciNet  Google Scholar 

  20. Li, P., Wang, J.: Stable minimal hypersurfaces in a nonnegatively curved manifold. J. Reine Angew. Math. 566, 215–230 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Lin, H.: On the structure of submanifolds in the hyperbolic space. Monatsh. Math. 180(3), 579–594 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lin, H.: Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space. Nonlinear Anal. 148, 126–137 (2017)

    Article  MathSciNet  Google Scholar 

  23. Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017)

    Article  MathSciNet  Google Scholar 

  24. Michael, J., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of \({\mathbb{R}}^n\). Commun. Pure. Appl. Math. 26, 361–379 (1973)

    Article  Google Scholar 

  25. Miyaoka, R.: \(L^2\) harmonic \(1\)-forms on a complete stable minimal hypersurface. In: Geometry and Global Analysis, pp. 289–293. Tohoku University (1993)

  26. Miyaoka, R., Ueki, S.: Stability of complete minimal Lagrangian submanifold and \(L^2\) harmonic \(1\)-forms. In: Real and Complex Submanifolds. Springer Proceedings in Mathematics, vol. 106, pp. 89-95. Springer, Tokyo (2014)

  27. Ni, L.: Gap theorems for minimal submanifolds in \({\mathbb{R}}^{n+1}\). Commun. Anal. Geom. 9(3), 641–656 (2001)

    Article  MathSciNet  Google Scholar 

  28. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)

    Article  MathSciNet  Google Scholar 

  29. Palmer, B.: Stability of minimal hypersurfaces. Comment. Math. Helv. 66, 185–188 (1991)

    Article  MathSciNet  Google Scholar 

  30. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Progress in Mathematics, vol. 266. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  31. Reckziegel, H.: Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion. In: Global Differential Geometry and Global Analysis (Berlin, 1984). Lecture Notes in Mathematics, vol. 1156, pp. 264–279. Springer (1985)

  32. Seo, K.: Minimal submanifolds with small total scalar curvature in Euclidean space. Kodai Math. J. 31(1), 113–119 (2008)

    Article  MathSciNet  Google Scholar 

  33. Seo, K.: Rigidity of minimal submanifolds in hyperbolic space. Arch. Math. (Basel) 94(2), 173–181 (2010)

    Article  MathSciNet  Google Scholar 

  34. Seo, K.: \(L^2\) harmonic \(1\)-forms on minimal submanifolds in hyperbolic space. J. Math. Anal. Appl. 371(2), 546–551 (2010)

    Article  MathSciNet  Google Scholar 

  35. Seo, K.: \(L^p\) harmonic \(1\)-forms and first eigenvalue of a stable minimal hypersurface. Pac. J. Math. 268(1), 205–229 (2014)

    Article  Google Scholar 

  36. Yun, G.: Total scalar curvature and \(L^2\) harmonic \(1\)-forms on a minimal hypersurface in Euclidean space. Geom. Dedicata 89, 135–141 (2002)

    Article  MathSciNet  Google Scholar 

  37. Zhu, P., Fang, S.: A gap theorem on submanifolds with finite total curvature in spheres. J. Math. Anal. Appl. 413(1), 195–201 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhu, P., Fang, S.: Finiteness of non-parabolic ends on submanifolds in spheres. Ann. Glob. Anal. Geom. 46(2), 187–196 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Otto van Koert and Doctor Joe S. Wang for valuable conversations and suggestions. This work was supported by the National Research Foundation of Korea (NRF-2016R1C1B2009778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keomkyo Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Seo, K. \(L^p\) harmonic 1-forms on totally real submanifolds in a complex projective space. Ann Glob Anal Geom 57, 383–400 (2020). https://doi.org/10.1007/s10455-020-09705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-020-09705-w

Keywords

Mathematics Subject Classification

Navigation