Skip to main content
Log in

Global regularity and solvability of left-invariant differential systems on compact Lie groups

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript


We are interested in global properties of systems of left-invariant differential operators on compact Lie groups: regularity properties, properties on the closedness of the range and finite dimensionality of their cohomology spaces, when acting on various function spaces, e.g., smooth, analytic and Gevrey. Extending the methods of Greenfield and Wallach (Trans Am Math Soc 183:153–164, 1973) to systems, we obtain abstract characterizations for these properties and use them to derive some generalizations of results due to Greenfield (Proc Am Math Soc 31:115–118, 1972), Greenfield and Wallach (Proc Am Math Soc 31:112–114, 1972), as well as global versions of a result of Caetano and Cordaro (Trans Am Math Soc 363(1):185–201, 2011) for involutive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. This should not be confused with sheaf cohomology since we are not assuming local exactness of \(\mathrm {d}'\).

  2. Notice that when G is commutative these are actually zero: since the basic vector fields (1.2) are then pairwise commutative their dual forms \(\tau _1, \ldots , \tau _n, \zeta _1, \ldots , \zeta _m\) are automatically closed, hence (1.6) vanishes in that case.

  3. We are actually summing over a set of representations of G containing exactly one representative of each class in \({\widehat{G}}\).

  4. See Remark 2.1.


  1. Araújo, G.: Regularity and solvability of linear differential operators in Gevrey spaces. Math. Nachr. 291(5–6), 729–758 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bergamasco, A.P., Petronilho, G.: Closedness of the range for vector fields on the torus. J. Differ. Equ. 154(1), 132–139 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’opérateurs. In: Séminaire Goulaouic–Schwartz (1978/1979), pages Exp. No. 13, 9. École Polytech., Palaiseau (1979)

  4. Caetano, P.A.S., Cordaro, P.D.: Gevrey solvability and Gevrey regularity in differential complexes associated to locally integrable structures. Trans. Amer. Math. Soc. 363(1), 185–201 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics (Including a Chapter by Burton Randol, With an Appendix by Jozef Dodziuk), vol. 115. Academic Press Inc., Orlando (1984)

  6. Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948)

    Article  MathSciNet  Google Scholar 

  7. Dasgupta, A., Ruzhansky, M.: Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces. Bull. Sci. Math. 138(6), 756–782 (2014)

    Article  MathSciNet  Google Scholar 

  8. Dasgupta, A., Ruzhansky, M.: Eigenfunction expansions of ultradifferentiable functions and ultradistributions. Trans. Amer. Math. Soc. 368(12), 8481–8498 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fujita, K., Morimoto, M.: Gevrey classes on compact real analytic Riemannian manifolds. Tokyo J. Math. 18(2), 341–355 (1995)

    Article  MathSciNet  Google Scholar 

  10. Greenfield, S.J.: Hypoelliptic vector fields and continued fractions. Proc. Amer. Math. Soc. 31, 115–118 (1972)

    Article  MathSciNet  Google Scholar 

  11. Greenfield, S.J., Wallach, N.R.: Global hypoellipticity and Liouville numbers. Proc. Amer. Math. Soc. 31, 112–114 (1972)

    Article  MathSciNet  Google Scholar 

  12. Greenfield, S.J., Wallach, N.R.: Remarks on global hypoellipticity. Trans. Amer. Math. Soc. 183, 153–164 (1973)

    Article  MathSciNet  Google Scholar 

  13. Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall Inc, Englewood Cliffs (1965)

    MATH  Google Scholar 

  14. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Springer, New York (2012)

    Book  Google Scholar 

  15. Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras. Ann. Math. 2(57), 591–603 (1953)

    Article  Google Scholar 

  16. Jahnke, M.R.: Top-Degree Solvability for Hypocomplex Structures and the Cohomology of Left-invariant Involutive Structures on Compact Lie Groups. University of São Paulo, PhD thesis (2018)

  17. Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140. Birkhäuser Boston Inc, Boston (1996)

    Book  Google Scholar 

  18. Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan 19, 366–383 (1967)

    Article  MathSciNet  Google Scholar 

  19. Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)

    Article  MathSciNet  Google Scholar 

  20. Köthe, G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 237. Springer, New York (1979)

  21. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183), vol. III. Springer, New York (1973)

  22. Malaspina, F., Nicola, F.: Gevrey local solvability in locally integrable structures. Ann. Mat. Pura Appl. 193(5), 1491–1502 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ragognette, L.F.: Ultradifferential operators in the study of Gevrey solvability and regularity. Math. Nachr. 292, 409–427 (2019)

    Article  MathSciNet  Google Scholar 

  24. Schapira, P.: Solutions hyperfonctions des équations aux dérivées partielles du premier ordre. Bull. Soc. Math. France 97, 243–255 (1969)

    Article  MathSciNet  Google Scholar 

  25. Seeley, R.T.: Eigenfunction expansions of analytic functions. Proc. Amer. Math. Soc. 21, 734–738 (1969)

    Article  MathSciNet  Google Scholar 

  26. Suzuki, H.: On the semi-local existence of real analytic solutions of a partial differential equation. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11, 245–252 (1972)

    MathSciNet  MATH  Google Scholar 

  27. Treves, F.: Hypo-Analytic Structures, Princeton Mathematical Series (Local Theory), vol. 40. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  28. Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, No. 19. Marcel Dekker Inc, New York (1973)

    MATH  Google Scholar 

Download references


I wish to thank Paulo D. Cordaro and Andrew Raich for discussing parts of this work and their very useful inputs and also especially Max R. Jahnke and Luis F. Ragognette for their active participation in the earlier stages of this work, including helping to set up the original questions and proposing the framework that led to it, as well as many helpful suggestions throughout its development.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gabriel Araújo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant 140838/2012-0) and the São Paulo Research Foundation (FAPESP, Grant 2018/12273-5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, G. Global regularity and solvability of left-invariant differential systems on compact Lie groups. Ann Glob Anal Geom 56, 631–665 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification