Advertisement

Annals of Global Analysis and Geometry

, Volume 56, Issue 3, pp 583–596 | Cite as

The Simanca metric admits a regular quantization

  • Francesco Cannas Aghedu
  • Andrea LoiEmail author
Article

Abstract

Let \(g_\mathrm{{S}}\) be the Simanca metric on the blow-up \(\tilde{\mathbb {C}}^2\) of \({\mathbb {C}}^2\) at the origin. We show that \((\tilde{\mathbb {C}}^2,g_\mathrm{{S}})\) admits a regular quantization. We use this fact to prove that all coefficients in the Tian–Yau–Zelditch expansion for the Simanca metric vanish and that a dense subset of \((\tilde{\mathbb {C}}^2, g_\mathrm{{S}})\) admits a Berezin quantization.

Keywords

Kähler manifolds TYZ asymptotic expansion Radial metrics Scalar flat metrics Projectively induced metrics Simanca metric Berezin quantization 

Mathematics Subject Classification

53C55 58C25 58F06 

Notes

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Arezzo, C., Loi, A.: Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch. J. Geom. Phys. 47, 87–99 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Comm. Math. Phys. 243, 543–559 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Arezzo, C., Loi, A., Zuddas, F.: On homothetic balanced metrics. Ann. Global Anal. Geom. 41(4), 473–491 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arezzo, C., Loi, A., Zuddas, F.: Szegö kernel, regular quantizations and spherical CR-structures. Math. Z. 275, 1207–1216 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arezzo, C., Pacard, F.: Blowing up Kähler manifolds with constant scalar curvature II. Ann. of Math. (2) 170(2), 685–738 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berezin, F.A.: Quantization. Math. USSR Izv. 8, 1109–1163 (1974)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock–Bargmann–Hartogs domains. Ann. Global Anal. Geom. 49, 349–359 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cahen, M., Gutt, S., Rawnsley, J.H.: Quantization of Kähler manifolds I: geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7, 45–62 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Calabi, E.: Isometric imbeddings of complex manifolds. Ann. Math. 58, 1–23 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cannas Aghedu, F.: On the balanced condition for the Eguchi–Hanson metric. J. Geom. Phys. 137, 35–39 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Scala, A., Ishi, H., Loi, A.: Kähler immersions of homogeneous Kähler manifolds into complex space forms. Asian J. Math. 16(3), 479–488 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Donaldson, S.: Scalar curvature and projective embeddings I. J. Differential Geom. 59, 479–522 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Amer. Math. Soc. 348, 411–479 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487, 40–54 (2006)Google Scholar
  16. 16.
    Feng, Z., Tu, Z.: On canonical metrics on Cartan–Hartogs domains. Math. Z. 278(1–2), 301–320 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Greco, A., Loi, A.: Radial balanced metrics on the unit disk. J. Geom. Phys. 60, 53–59 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  19. 19.
    Loi, A.: The Tian–Yau–Zelditch asymptotic expansion for real analytic Kähler metrics. Int. J. Geom. Methods Mod. Phys. 1, 253–263 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Loi, A.: A Laplace integral, the T–Y–Z expansion and Berezin’s transform on a Kähler manifold. Int. J. Geom. Methods Mod. Phys. 2, 359–371 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Loi, A.: Regular quantizations of Kähler manifolds and constant scalar curvature metrics. J. Geom. Phys. 53(3), 354–364 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Loi, A.: Calabi’s diastasis function for Hermitian symmetric spaces. Differential Geom. Appl. 24, 311–319 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Loi, A., Mossa, R.: Berezin quantization of homogeneous bounded domains. Geom. Dedicata 161, 119–128 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Loi, A., Mossa, R.: Some remarks on homogeneous Kähler manifolds. Geom. Dedicata 179, 1–7 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Loi, A., Mossa, R., Zuddas, F.: The log-term of the disc bundle over a homogeneous Hodge manifold. Ann. Global Anal. Geom. 51(1), 35–51 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Loi, A., Salis, F., Zuddas, F.: Two conjectures on Ricci-flat Kähler metrics. Math. Z. 1, 1–15 (2018)zbMATHGoogle Scholar
  27. 27.
    Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan–Hartogs domains. Math. Z. 270(3–4), 1077–1087 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Loi, A., Zedda, M., Zuddas, F.: Some remarks on the Kähler geometry of the Taub-NUT metrics. Ann. Global Anal. Geom. 41(4), 515–533 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Loi, A., Zedda, M.: On the coefficients of TYZ expansion of locally Hermitian symmetric spaces. Manuscripta Math. 148, 303–315 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lu, Z.: On the lower terms of the asymptotic expansion of Tian–Yau–Zelditch. Amer. J. Math. 122, 235–273 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lu, Z., Tian, G.: The log term of Szegö Kernel. Duke Math. J. 125(2), 351–387 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  33. 33.
    Rawnsley, J.: Coherent states and Kähler manifolds. Q. J. Math. Oxford (2) 28, 403–415 (1977)CrossRefzbMATHGoogle Scholar
  34. 34.
    Simanca, Santiago R.: Kähler metrics of constant scalar curvature on bundles over \(\mathbb{C}P^{n-1}\). Math. Ann. 291, 239–246 (1991)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Xu, H.: A closed formula for the asymptotic expansion of the Bergman kernel. Comm. Math. Phys. 314(3), 555–585 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zedda, M.: Canonical metrics on Cartan–Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9(1), 1–13 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations