Skip to main content
Log in

On higher-order Codazzi tensors on complete Riemannian manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove several Liouville-type nonexistence theorems for higher-order Codazzi tensors and classical Codazzi tensors on complete and compact Riemannian manifolds, in particular. These results will be obtained by using theorems of the connections between the geometry of a complete smooth manifold and the global behavior of its subharmonic functions. In conclusion, we show applications of this method for global geometry of a complete locally conformally flat Riemannian manifold with constant scalar curvature because, its Ricci tensor is a Codazzi tensor and for global geometry of a complete hypersurface in a standard sphere because its second fundamental form is also a Codazzi tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aledo, J.A., Espinar, J.M., Galvez, J.A.: The Codazzi equation for surfaces. Adv. Math. 224, 2511–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, H.: Holonomy Group of Lorentzian Manifolds: A Status Report, Global Differential Geometry, pp. 163–200. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Bérard, P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited. Bull. AMS 19(2), 371–406 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M., Ebin, D.: Some decomposition of the space of symmetric tensors on a Riemannian manifold. J. Differential Geom. 3, 379–392 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  6. Bettiol, R.G., Mendes, R.A.E.: Sectional curvature and Weitzenböck formulae, Preprint. 29 Aug 2017, pp. 24 (2017). arXiv:1708.09033v1 [math.DG]

  7. Bourguignon, J.P.: Formules de Weitzenbök en dimension 4, Seminare A. Besse sur la geometrie Riemannienne dimension 4, Cedic. Ferman, Paris, pp. 156–177 (1981)

  8. Bourguignon, J.P.: Les variétés de dimension 4 á signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63, 263–286 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonsante, F., Seppi, A.: On Codazzi Tensors on a hyperbolic surface and flat Lorentzian geometry. Int. Math. Res. Not. 2016(2), 343–417 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bouguignon, J.-P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sc. Éc. Norm. Sup. 11, 71–92 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calabi, E.: An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Catino, C.: On conformally flat manifolds with constant positive scalar curvature. Proc. Amer. Math. Soc. 144, 2627–2634 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Catino, G., Mantegazza, C., Mazzieri, L.: A note on Codazzi tensors. Math. Ann. 362(1–2), 629–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Derdzinski, A., Shen, C.: Codazzi tensor fields, curvature and Pontryagin forms. Proc. Lond. Math. Soc. 47(3), 15–26 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. AMS Transl. 196, 13–33 (1999)

    MATH  Google Scholar 

  17. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)

    MATH  Google Scholar 

  18. Goldberg, S.I.: An application of Yau’s maximum principle to conformally flat spaces. Proc. AMS 79(2), 260–270 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greene, R.E., Wu, H.: Integrals of subharmonic functions on manifolds of nonnegative curvatures. Invent. Math. 27, 265–298 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guan, P., Viaclovsky, J., Wang, G.: Some properties of the Schouten tensor and applications to conformal geometry. Trans. AMS 355(3), 925–933 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, G.: Rigidity of Riemannian manifolds with positive scalar curvature. Ann. Global Anal. Geom. 54(2), 257–272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kashiwada, T.: On the curvature operator of the second kind. Natural Sci. Rep. Ochanomizu Univ. 44(2), 69–73 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Kobayashi, Sh, Nomizu, K.: Foundations of Differential Geometry, vol. 2. Intersc. Publ., New York (1969)

    MATH  Google Scholar 

  24. Lawson, B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89(2), 187–197 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leder, J., Schwenk-Schellschmidt, A., Simon, U., Wiehe, M.: Generating Higher Order Codazzi Tensors by Functions, Geometry and Topology of Submanifolds IX, pp. 174–191. World Scientific Publishing, London (1999)

    Book  Google Scholar 

  26. Li, P., Schoen, R.: \({ L}^{p}\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153, 279–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, H.L., Simon, U., Wang, C.P.: Codazzi tensor and the topology of surfaces. Ann. Global Anal. Geom. 16, 189–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, H.L., Simon, U., Wang, C.P.: Higher order Codazzi tensors on conformally flat spaces. Contrib. to Algebra and Geometry 39(2), 329–348 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Merton, G.: Codazzi tensors with two eigenvalue functions. Proc. AMS 141, 3265–3273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mikeš, J., et al.: Differential Geometry of Special Mappings, p. 566. Palacky University Press, Olomouc (2015)

    MATH  Google Scholar 

  31. Morvan, J.-M.: Differential geometry of Riemannian submanifolds: recent results. In: Proceedings of a Conference on Algebraic and Geometry, pp. 145–151. Kuwait University Press, Kuwait (1981)

  32. Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96, 207–213 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, C.-K., Terng, C.-L.: The scalar curvature of minimal hypersurfaces in spheres. Math. Ann. 266, 105–113 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petersen, P.: Riemannian Geometry. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  35. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. Birkhäuser Verlag AG, Berlin (2008)

    MATH  Google Scholar 

  36. Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the Affine Differential Geometry of Hypersurfaces. Science University Tokyo Press, Tokyo (1991)

    MATH  Google Scholar 

  37. Stepanov, S.E.: Fields of symmetric tensors on a compact Riemannian manifold. Math. Notes 52(4), 1048–1050 (1992)

    Article  MathSciNet  Google Scholar 

  38. Stepanov, S.E., Mikeš, J.: Hodge-de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with a curvature operator of fixed sign. Izv. Math. 79(2), 375–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stepanov, S.E., Mikeš, J.: Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds. Diff. Geom. Appl. 54, Part A, 111–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stepanov, S.E., Tsyganok, I.I.: Theorems of existence and of vanishing of conformally Killing forms. Russian Math. 58(10), 46–51 (2014)

    Article  MATH  Google Scholar 

  41. Stepanov, S., Tsyganok, I.I.: Vanishing theorems for harmonic mappings into non-negatively curved manifolds and their applications. Manuscripta Math. 154(1–2), 79–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stepanov, S.E., Tsyganok, I.I.: Theorems on conformal mappings of complete Riemannian manifolds and their applications. Balkan J. Geom. Appl. 22(1), 81–86 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Stepanov, S.E., Tsyganok, I.I.: Conformal Killing \(L^2\)-forms on complete Riemannian manifolds with nonpositive curvature operator. J. Math. Anal. Appl. 458(1), 1–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tachibana, S., Ogiue, K.: Les variétés riemanniennes dont l’opérateur de coubure restreint est positif sont des sphères d’homologie réelle. C. R. Acad. Sci. Paris 289, 29–30 (1979)

    MathSciNet  MATH  Google Scholar 

  45. Tani, M.: On a conformally flat Riemannian space with positive Ricci curvature. Tohoku Math. J. 19(2), 227–231 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wegner, B.: Kennzeichnungen von Räumen konstanter Krümmung unter lokal konform Euklidischen Riemannschen Mannigfaltigkeiten. Geom. Dedicata 2, 269–281 (1973)

    Article  MATH  Google Scholar 

  47. Wolf, G.: Spaces of Constant Curvature. California University Press, Berkley (1972)

    Google Scholar 

  48. Wu, H.: The Bochner Technique in Differential Geometry. Harwood Academic Publishers, New York (1988)

    MATH  Google Scholar 

  49. Yano, K., Bochner, S.: Curvature and Betti Numbers. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  50. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–679 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our work was supported by the Internal Grant Agency of the Faculty of Science of Palacky University, Olomouc (Grant No. 2019018 “Mathematical Structures”). The authors would like to express their thanks to Professor Ivor Hall (BA Hons) for her editorial suggestions, that contributed to the improvement in this paper as well as to the referee for his careful reading of the previous version of the manuscript and suggestions about this paper which led to various improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Mikeš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandra, I.G., Stepanov, S.E. & Mikeš, J. On higher-order Codazzi tensors on complete Riemannian manifolds. Ann Glob Anal Geom 56, 429–442 (2019). https://doi.org/10.1007/s10455-019-09673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09673-w

Keywords

Mathematics Subject Classification

Navigation