Annals of Global Analysis and Geometry

, Volume 55, Issue 4, pp 805–817 | Cite as

Generalization of Philippin’s results for the first Robin eigenvalue and estimates for eigenvalues of the bi-drifting Laplacian

  • Abdolhakim ShoumanEmail author


In the present paper, we first consider the weighted eigenvalue problem \(\Delta _f u=\lambda _{f}u\) in M with the Robin boundary condition \(\frac{\partial u}{\partial \nu }+\beta u=0\) on \(\partial M\), where \((M^n,g,e^{-f})\) is a compact n-dimensional weighted Riemannian manifold of nonnegative Bakry–Émery Ricci curvature. We derive under some convexity condition of the boundary \(\partial M\), an explicit lower bound of the first weighted Robin eigenvalue \(\lambda _{1,f}(\beta )\) depending only on the geometry of M and the constant \(\beta \) appearing in the boundary condition. Another new estimate for \(\lambda _{1,f}(\beta )\) with respect to the first nonzero Neumann eigenvalue \(\mu _{2,f}\) of the weighted Laplacian \(\Delta _f\) is also obtained. Furthermore, we provide some lower bounds for the first buckling and clamped plate eigenvalues of the bi-drifting Laplacian on weighted manifolds.


Drifting Laplacian Bakry–Émery curvature Lower bounds Robin boundary condition Neumann problem Riemannian manifolds Convex boundary Reilly’s formula Bi-drifting Laplacian 

Mathematics Subject Classification

35P15 35J05 35J25 53C21 58C40 



The author would like to thank Mr Saïd Ilias for helpful discussions and useful remarks. The author would also like to thank the anonymous referee for the careful reading and the valuable comments on the first version of the submitted manuscript.


  1. 1.
    Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S.: Inequalities for the first eigenvalues of the clamped plate and buckling problems. General Inequal. 7 (Oberwolfach, 1995), Internat. Ser. Numer. Math., vol. 123. Birkhäuser, Basel, pp. 95–110 (1997)Google Scholar
  2. 2.
    Bayle, V.: Propriétées de concavité du profil isopérimétrique et applications, Ph.D. thesis, Universié Joseph-Fourier - Grenoble (2004)Google Scholar
  3. 3.
    Batista, M., Cavalcante, M.P., Pyo, J.: Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds. J. Math. Anal. Appl. 419(1), 617–626 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)CrossRefGoogle Scholar
  5. 5.
    Bucur, D., Freitas, P., Kennedy, J.: The Robin Problem, Shape Optimization and Spectral Theory, pp. 78–119. De Gruyter Open, Warsaw (2017)zbMATHGoogle Scholar
  6. 6.
    Bossel, M.-H.: Membranes élastiquement liées: extension du théorème de Rayleigh–Faber–Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302(1), 47–50 (1986)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bandle, C., Sperb, R.P.: Applications of Rellich’s perturbation theory to a classical boundary and eigenvalue problem. Z. Angew. Math. Phys. 24, 709–720 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, D., Cheng, Q.-M., Wang, Q., Xia, C.: On eigenvalues of a system of elliptic equations and of the biharmonic operator. J. Math. Anal. Appl. 387(2), 1146–1159 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daners, D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335(4), 767–785 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du, F., Bezerra, A.C.: Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting Laplacian. Commun. Pure Appl. Anal. 16(2), 475–491 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Daners, D., Kennedy, J.B.: On the asymptotic behaviour of the eigenvalues of a Robin problem. Differential Integral Equations 23(7–8), 659–669 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Filinovskiy, A.: On the eigenvalues of a Robin problem with a large parameter. Math. Bohem. 139(2), 341–352 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Filinovskiy, A.V.: On the estimates of eigenvalues of the boundary value problem with large parameter. Tatra Mt. Math. Publ. 63, 101–113 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Filinovskiy, A.V.: On the asymptotic behavior of eigenvalues and eigenfunctions of the Robin problem with large parameter. Math. Model. Anal. 22(1), 37–51 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kennedy, J.: A Faber–Krahn inequality for the Laplacian with generalised Wentzell boundary conditions. J. Evol. Equ. 8(3), 557–582 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kennedy, J.B.: On the isoperimetric problem for the laplacian with robin and wentzell boundary conditions. Ph.D. thesis, University of Sydney, School of Mathematics and Statistics (2010)Google Scholar
  17. 17.
    Kovařík, H.: On the lowest eigenvalue of Laplace operators with mixed boundary conditions. J. Geom. Anal. 24(3), 1509–1525 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)zbMATHGoogle Scholar
  19. 19.
    Lichnerowicz, A.: Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geom. 6 (1971/72), 47–94Google Scholar
  20. 20.
    Liu, G.: Some inequalities and asymptotic formulas for eigenvalues on Riemannian manifolds. J. Math. Anal. Appl. 376(1), 349–364 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Levitin, M., Parnovski, L.: On the principal eigenvalue of a Robin problem with a large parameter. Math. Nachr. 281(2), 272–281 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lou, Y., Zhu, M.: A singularly perturbed linear eigenvalue problem in \(C^1\) domains. Pacific J. Math. 214(2), 323–334 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ma, L., Sheng-Hua, D.: Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. C. R. Math. Acad. Sci. Paris 348(21–22), 1203–1206 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Morgan, F.: Manifolds with density. Notices Amer. Math. Soc. 52(8), 853–858 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Payne, L.E.: New isoperimetric inequalities for eigenvalues and other physical quantities. Comm. Pure Appl. Math. 9, 531–542 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Philippin, G.A.: Some remarks on the elastically supported membrane. Z. Angew. Math. Phys. 29(2), 306–314 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Payne, L.E., Schaefer, P.W.: Eigenvalue and eigenfunction inequalities for the elastically supported membrane. Z. Angew. Math. Phys. 52(5), 888–895 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Payne, L.E., Weinberger, H.F.: Lower bounds for vibration frequencies of elastically supported membranes and plates. J. Soc. Indust. Appl. Math. 5, 171–182 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reilly, R.C.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26(3), 459–472 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Setti, A.G.: Eigenvalue estimates for the weighted Laplacian on a Riemannian manifold. Rend. Sem. Mat. Univ. Padova 100, 27–55 (1998)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sperb, R.P.: An isoperimetric inequality for the first eigenvalue of the Laplacian under Robin boundary conditions. General Inequalities, 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math., vol. 103, pp. 361–367. Birkhäuser, Basel (1992)Google Scholar
  32. 32.
    Sperb, R.: Bounds for the first eigenvalue of the elastically supported membrane on convex domains. Z. Angew. Math. Phys. 54(5), 879–903 (2003). Special issue dedicated to Lawrence E. PayneGoogle Scholar
  33. 33.
    Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differential Geom. 83(2), 377–405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xia, C., Hongwei, X.: Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds. Ann. Global Anal. Geom. 45(3), 155–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, L.: The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds. C. R. Math. Acad. Sci. Paris 353(8), 735–740 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique Théorique, CNRS-UMR 7350, Fédération Denis Poisson, FR-CNRS 2964Université de ToursToursFrance

Personalised recommendations