Skip to main content
Log in

A potential generalization of some canonical Riemannian metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The aim of this paper is to study new classes of Riemannian manifolds endowed with a smooth potential function, including in a general framework classical canonical structures such as Einstein, harmonic curvature and Yamabe metrics, and, above all, gradient Ricci solitons. For the most rigid cases, we give a complete classification, while for the others we provide rigidity and obstruction results, characterizations and nontrivial examples. In the final part of the paper, we also describe the “nongradient” version of this construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alias, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  2. Aubin, T.: Métriques riemanniennes et courbure. J. Differential Geom. 4, 383–424 (1970)

    Article  MATH  Google Scholar 

  3. Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs. Math. Z. 9, 110–135 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baird, P.: A class of three-dimensional Ricci solitons. Geom. Topol. 13, 979–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baird, P., Danielo, L.: Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 608, 65–91 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Besse, A.L.: Einstein Manifolds. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Bland, J., Kalka, M.: Negative scalar curvature metrics on noncompact manifolds. Trans. Amer. Math. Soc. 316(2), 433–446 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. (2) 167(3), 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourguignon, J.-B., Ezin, J.-P.: Scalar curvature functions in a conformal class of metrics and conformal transformations. Trans. Amer. Math. Soc. 301(2), 723–736 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourguignon, J.-P.: Les variétés de dimension \(4\) à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63(2), 263–286 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourguignon, J.P.: Ricci curvature and Einstein metrics. In: Ferus, D., Kühnel, W., Simon, U., Wegner, B. (eds.) Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol. 838, pp. 42–63. Springer, Berlin (1981)

    Chapter  Google Scholar 

  12. Bourguignon, J.-P., Jr, H.B.L.: Stability and isolation phenomena for Yang–Mills fields. Comm. Math. Phys. 79(2), 189–230 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bryant, R.L.: Ricci flow solitons in dimension three with \({S}{O}(3)\)–symmetries. http://www.math.duke.edu/bryant/3DRotSymRicciSolitons.pdf (2005)

  14. Bueler, E.L.: The heat kernel weighted Hodge Laplacian on noncompact manifolds. Trans. Amer. Math. Soc. 351(2), 683–713 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, H.-D.: Recent progress on Ricci solitons. Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics, vol. 11, pp. 1–38. International Press, Somerville (2010)

    Google Scholar 

  16. Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Amer. Math. Soc. 364(5), 2377–2391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162(6), 1149–1169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cartan, E.: Sur une classe remarquable d’espaces de Riemann. II. Bull. Soc. Math. France 55, 114–134 (1927)

    Article  MathSciNet  Google Scholar 

  19. Cartan, E.: Leçons sur la géométrie des espaces de Riemann, 2nd edn. Gauthier-Villars, Paris (1951)

    MATH  Google Scholar 

  20. Catino, G.: On conformally flat manifolds with constant positive scalar curvature. Proc. Amer. Math. Soc. 144(6), 2627–2634 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Catino, G., Mantegazza, C.: The evolution of the Weyl tensor under the Ricci flow. Ann. Inst. Fourier (Grenoble) 61(4), 1407–1435 (2012). 2011

    Article  MathSciNet  MATH  Google Scholar 

  22. Catino, G., Mantegazza, C., Mazzieri, L.: Locally conformally flat ancient Ricci flows. Anal. PDE 8(2), 365–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Catino, G., Mantegazza, C., Mazzieri, L.: A note on Codazzi tensors. Math. Ann. 362(1–2), 629–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Catino, G., Mastrolia, P., Monticelli, D.D.: Gradient Ricci solitons with vanishing conditions on Weyl. J. Math. Pures Appl. (9) 108(1), 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Catino, G., Mastrolia, P., Monticelli, D.D., Rigoli, M.: Conformal Ricci solitons and related integrability conditions. Adv. Geom. 16(3), 301–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, X., Wang, Y.: On four-dimensional anti-self-dual gradient Ricci solitons. J. Geom. Anal. 25(2), 1335–1343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Derdziński, A.: On compact Riemannian manifolds with harmonic curvature. Math. Ann. 259(2), 145–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Drdziński, A.: Riemannian manifolds with harmonic curvature. In: Ferus, D., Gardner, R.B., Helgason, S., Simon, U. (eds.) Global Differential Geometry and Global Analysis 1984. Lecture Notes in Mathematics, vol. 1156, pp. 74–85. Springer, Berlin (1985)

    Chapter  Google Scholar 

  29. Derdziński, A., Roter, W.: On conformally symmetric manifolds with metrics of indices \(0\) and \(1\). Tensor (N.S.) 31(3), 255–259 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Derdziński, A., Shen, C.L.: Codazzi tensor fields, curvature and Pontryagin forms. Proc. Lond. Math. Soc. (3) 47(1), 15–26 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. DeTurck, D., Goldschmidt, H.: Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor. Forum Math. 1(4), 377–394 (1989)

    MathSciNet  MATH  Google Scholar 

  32. Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscripta Math. 127(3), 345–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fernández-López, M., García-Río, E.: Rigidity of shrinking Ricci solitons. Math. Z. 269(1–2), 461–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  35. Gursky, M.J.: Conformal vector fields on four-manifolds with negative scalar curvature. Math. Z. 232(2), 265–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differential Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kazdan, J.L.: Unique continuation in geometry. Comm. Pure Appl. Math. 41, 667–681 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 2(101), 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geom. 10, 113–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lauret, J.: Ricci soliton homogeneous nilmanifolds. Math. Ann. 319, 715–733 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Ann. 339(3), 627–666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Merton, G.: Codazzi tensors with two eigenvalue functions. Proc. Amer. Math. Soc. 141(9), 3265–3273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Ni, L., Wallach, N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15(5), 941–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ozeki, K.N.H.: A theorem on curvature tensor fields. Proc. Nat. Acad. Sci. USA 48, 206–207 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  47. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. http://arxiv.org (2002)

  48. Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14, 2277–2300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tachibana, S.: A theorem of Riemannian manifolds of positive curvature operator. Proc. Japan Acad. 50, 301–302 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanno, S.: Curvature tensors and covariant derivatives. Ann. Mat. Pura Appl. 4(96), 233–241 (1972)

    MathSciNet  MATH  Google Scholar 

  51. Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc 117, 251–275 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies, vol. 32. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  53. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pacific J. Math. 242(1), 189–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and they are partially supported by GNAMPA project “Strutture di tipo Einstein e Analisi Geometrica su varietà Riemanniane e Lorentziane.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mastrolia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catino, G., Mastrolia, P. A potential generalization of some canonical Riemannian metrics. Ann Glob Anal Geom 55, 719–748 (2019). https://doi.org/10.1007/s10455-019-09649-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09649-w

Keywords

Mathematics Subject Classification

Navigation