Toric nearly Kähler manifolds

Abstract

We show that 6-dimensional strict nearly Kähler manifolds admitting effective \({\mathbb {T}}^3\) actions by automorphisms are completely characterized in the neigborhood of each point by a function on \({\mathbb {R}}^3\) satisfying a certain Monge–Ampère-type equation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. 27, 201–225 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Dixon, K.: The multi-moment map of the nearly Kähler \(S^3\times S^3\). arXiv:1702.05297

  3. 3.

    Foscolo, L.: Deformation theory of nearly Kähle manifolds. J. Lond. Math. Soc. 95(2), 586–612 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Foscolo, L., Haskins, M.: New G2-holonomy cones and exotic nearly Kähle structures on the 6-sphere and the product of two 3-spheres. Ann. Math. 185(1), 59–130 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Friedrich, Th, Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom. 3, 265–273 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Gray, A.: The structure of nearly Kähler manifolds. Math. Ann. 223, 233–248 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 35–58 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Hitchin, N.: The geometry of three-forms in six dimensions. J. Differential Geom. 55, 547–576 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Madsen, T.B., Swann, A.: Closed forms and multi-moment maps. Geom. Dedicata 165(1), 25–52 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Moroianu, A., Nagy, P.-A., Semmelmann, U.: Unit Killing vector fields on nearly Kähler manifolds. Int. J. Math. 16, 281–301 (2005)

    Article  MATH  Google Scholar 

  11. 11.

    Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Comm. Math. Phys. 294, 251–272 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Nagy, P.-A.: Nearly-Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Moroianu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moroianu, A., Nagy, P. Toric nearly Kähler manifolds. Ann Glob Anal Geom 55, 703–717 (2019). https://doi.org/10.1007/s10455-019-09648-x

Download citation

Keywords

  • Killing vector field
  • Nearly Kähler manifold
  • Toric structure

Mathematics Subject Classification

  • 53C12
  • 53C24
  • 53C55