Skip to main content
Log in

Surfaces expanding by non-concave curvature functions

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we first investigate the flow of convex surfaces in the space form \(\mathbb {R}^3(\kappa )~(\kappa =0,1,-1)\) expanding by \(F^{-\alpha }\), where F is a smooth, symmetric, increasing and homogeneous of degree one function of the principal curvatures of the surfaces and the power \(\alpha \in (0,1]\) for \(\kappa =0,-1\) and \(\alpha =1\) for \(\kappa =1\). By deriving that the pinching ratio of the flow surface \(M_t\) is no greater than that of the initial surface \(M_0\), we prove the long time existence and the convergence of the flow. No concavity assumption of F is required. We also show that for the flow in \(\mathbb {H}^3\) with \(\alpha \in (0,1)\), the limit shape may not be necessarily round after rescaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 2(2), 151–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Diffe. Geom. 39(2), 407–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, B.: Fully nonlinear parabolic equations in two space variables, arXiv: math.DG/0402235 (2004)

  4. Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Andrews, B.: Moving surfaces by non-concave curvature functions. Calc. Var. Partial Differ. Equ. 39(3–4), 649–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, B., Langford, M., McCoy, J.: Convexity estimates for surfaces moving by curvature functions. J. Differ. Geom. 99(1), 47–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, B., Gulliver, R.: Aleksandrov reflection and nonlinear evolution equations. I. The \(n\)-sphere and \(n\)-ball. Calc. Var. Partial Differ. Equ. 4(3), 249–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerhardt, C.: Closed Weingarten hypersurfaces in Riemannian manifolds. J. Differ. Geom. 43(3), 612–641 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerhardt, C.: Curvature Problems, Series in Geometry and Topology, vol. 39. International Press, Somerville (2006)

    MATH  Google Scholar 

  11. Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89(3), 487–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerhardt, C.: Non-scale-invariant inverse curvature flows in Euclidean space. Calc. Var. Partial Differ. Equ. 49(1–2), 471–489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerhardt, C.: Curvature flows in the sphere. J. Differ. Geom. 100(2), 301–347 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamilton, R.: Convex hypersurfaces with pinched second fundamental form. Commun. Anal. Geom. 2, 167–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996). In: Lecture Notes in Mathematics, vol. 1713, pp. 45–84. Springer, Berlin (1999)

  17. Hung, P.-K., Wang, M.-T.: Inverse mean curvature flows in the hyperbolic 3-space revisited. Calc. Var. Partial Differ. Equ. 54(1), 119–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kröner, H., Scheuer, J.: Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature, arXiv:1703.07087

  19. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 487–523, 670 (1982) (Russian)

  20. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  21. Li, Q.-R.: Surfaces expanding by the power of the Gauss curvature flow. Proc. Am. Math. Soc. 138(11), 4089–4102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  23. Makowski, M., Scheuer, J.: Rigidity results, inverse curvature flows and alexandrov-fenchel type inequalities in the sphere. Asian J. Math. 20(5), 869–892 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. McCoy, J.A.: Curvature contraction flows in the sphere. Proc. Am. Math. Soc. 146(3), 1243–1256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Neves, A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Neill, B.: Semi-Riemannian geometry. In: Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983), With applications to relativity

  27. Pipoli, G.: Inverse mean curvature flow in complex hyperbolic space, to appear on Annales scientifiques de l’ENS, arXiv:1610.01886

  28. Pipoli, G.: Inverse mean curvature flow in quaternionic hyperbolic space. Rendiconti Lincei Matematica e Applicazioni 29(1), 153–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scheuer, J.: Gradient estimates for inverse curvature flows in hyperbolic space. Geom. Flows 1(1), 11–16 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Scheuer, J.: Non-scale-invariant inverse curvature flows in hyperbolic space. Calc. Var. Partial Differ. Equ. 53(1–2), 91–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Scheuer, J.: The inverse mean curvature flow in warped cylinders of non-positive radial curvature. Adv. Math. 306, 1130–1163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Scheuer, J.: Inverse curvature flows in Riemannian warped products (2017), arxiv:1712.09521

  33. Schnürer, O.C.: Surfaces expanding by the inverse Gauß curvature flow. J. Reine Angew. Math. 600, 117–134 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Urbas, J.I.E.: On the expansion of star-shaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(1), 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Urbas, J.I.E.: An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei, Y.: New pinching estimates for Inverse curvature flows in space forms. J. Geom. Anal. (online first). https://doi.org/10.1007/s12220-018-0051-1

  37. Zhou, H.: Inverse mean curvature flows in warped product manifolds. J. Geom. Anal. 28(2), 1749–1772 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported in part by NSFC Grant No. 11671214. The second author was supported in part by NSFC Grant No. 11571185 and the Fundamental Research Funds for the Central Universities. The third author was supported by Ben Andrews throughout his Australian Laureate Fellowship FL150100126 of the Australian Research Council. The authors would like to thank Ben Andrews and Julian Scheuer for comments on the earlier version of this paper and the referees for carefully reading this paper and providing many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, X. & Wei, Y. Surfaces expanding by non-concave curvature functions. Ann Glob Anal Geom 55, 243–279 (2019). https://doi.org/10.1007/s10455-018-9625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9625-1

Keywords

Mathematics Subject Classification

Navigation