Annals of Global Analysis and Geometry

, Volume 55, Issue 2, pp 181–196 | Cite as

Parallel spinors and basic holonomy in pseudo-Hermitian geometry

  • Felipe LeitnerEmail author


We introduce in this paper an adjustment for the Webster–Tanaka connection of pseudo-Hermitian geometry on CR manifolds, which behaves naturally with respect to issues concerning parallel sections and holonomy. We call this connection and its holonomy group basic. The basic holonomy group is suitable to describe pseudo-Einstein spaces. Moreover, for pseudo-Hermitian spin manifolds, we discuss the existence of (transversally) parallel spinors. Such spinors exist on pseudo-Einstein spaces, no matter of the sign of the Webster scalar curvature.


CR geometry Pseudo-Einstein structures Holonomy Parallel spinors 

Mathematics Subject Classification

Primary 32V05 53C27 53C29 Secondary 53C17 53C25 53C55 


  1. 1.
    Agricola, I., Friedrich, Th: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328(4), 711–748 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akahori, T.: A new approach to the local embedding theorem of CR-structures for \(n\ge 4\). Mem. Amer. Math. Soc. 67(366), xvi+257 (1987)Google Scholar
  3. 3.
    Bär, Ch.: Real Killing spinors and holonomy. Comm. Math. Phys. 154(3), 509–521 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boutet de Monvel, L.: Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., Exp. No. 9, p. 14. École Polytech., Paris, (1975) (in French)Google Scholar
  5. 5.
    Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistor and Killing spinors on Riemannian manifolds. Seminarberichte, 108. p. 179. Humboldt Universität, Sektion Mathematik, Berlin (1990)Google Scholar
  6. 6.
    Dragomir, S., Tomassini, G.: Differential geometry and analysis on CR manifolds. Progress in Mathematics, 246. Birkhäuser Boston, Boston (2006)Google Scholar
  7. 7.
    Figueroa-O’Farrill, J.: Breaking the M-waves. Classical Quantum Gravity 17(15), 2925–2947 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedrich, Th, Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jacobowitz, H.: The canonical bundle and realizable CR hypersurfaces. Pacific J. Math. 127(1), 91–101 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. II. Interscience Tracts in Pure and Applied Mathematics, No. 15, vol. II, pp. xv+470. Wiley, New York (1969)Google Scholar
  11. 11.
    Kuranishi, M.: Strongly pseudoconvex CR structures over small balls. I. An a priori estimate. Ann. of Math. (2) 115(3), 451–500 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuranishi, M.: Strongly pseudoconvex CR structures over small balls. II. A regularity theorem. Ann. of Math. (2) 116(1), 1–64 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuranishi, M.: Strongly pseudoconvex CR structures over small balls. III. An embedding theorem. Ann. of Math. (2) 116(2), 249–330 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Amer. J. Math. 110(1), 157–178 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leitner, F.: The First Eigenvalue of the Kohn–Dirac Operator on CR Manifolds, p. 38 (preprint) (2018)Google Scholar
  16. 16.
    Petit, R.: Spin-structures and Dirac operators on contact manifolds. Differential Geom. Appl. 22(2), 229–252 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stadtmüller, Ch.: Horizontal Dirac Operators in CR Geometry. Ph.D. thesis, Humboldt University Berlin (2017).
  18. 18.
    Tanaka, N.: A Differential Geometric Study on Strongly Pseudoconvex CR Manifolds. Lecture Notes in Math., vol. 9, Kyoto University, Kyoto (1975)Google Scholar
  19. 19.
    Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Webster, S.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13, 25–41 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut für Mathematik und InformatikUniversität GreifswaldGreifswaldGermany

Personalised recommendations