Annals of Global Analysis and Geometry

, Volume 54, Issue 2, pp 273–299 | Cite as

Morse theory for minimal surfaces in manifolds

  • Hwajeong Kim


A Morse theory of a given function gives information of the numbers of critical points of some topological type. A minimal surface, bounded by a given curve in a manifold, is characterized as a harmonic extension of a critical point of the functional \({\mathcal E}\) which corresponds to the Dirichlet integral. We want to obtain Morse theories for minimal surfaces in Riemannian manifolds. We first investigate the higher differentiabilities of \({\mathcal E}\). We then develop a Morse inequality for minimal surfaces of annulus type in a Riemannian manifold. Furthermore, we also construct body handle theories for minimal surfaces of annulus type as well as of disc type. Here we give a setting where the functional \({\mathcal E}\) is non-degenerated.


Minimal surfaces Harmonic maps Abstract critical point theory Morse theory 

Mathematics Subject Classification

49Q05 58E20 58E05 37B30 



This research was supported by Hannam University in 2016.


  1. 1.
    Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Basel (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Giaquinta, M.: Multiple Integrals in the Calculus of Variations. Princeton University Press, Princeton (1983)zbMATHGoogle Scholar
  5. 5.
    Gromov, M.L., Rohlin, V.A.: Imbeddings and immersion in Riemannian geometry. Russ. Math. Surv. 25, 1–57 (1970)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Heinz, E., Hildebrandt, S.: Some remarks on minimal surfaces in Riemannian manifolds. Commun. Pure Appl. Math. XXIII, 371–377 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hildebrand, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1–16 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hamilton, R.: Harmonic Maps of Manifolds with Boundary, LNM 471. Springer, Berlin (1975)CrossRefGoogle Scholar
  9. 9.
    Hohrein, J.: Existence of unstable minimal surfaces of higher genus in manifolds of nonpositive curvature. Dissertation (1994)Google Scholar
  10. 10.
    Jäger, W., Kaul, H.: Uniqueness and stability of harmonic maps and their Jacobi field. Manuscr. Math. 28, 269–291 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kim, H.: A variational approach to the regularity of the minimal surfaces of annulus type in Riemannian manifolds. Differ. Geom. Appl. 25, 466–484 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kim, H.: Unstable minimal surfaces of annulus type in manifolds. Adv. Geom. 3, 401–436 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kim, H.: The second derivative of the energy functional. Honam Math. J. 34(2), 191–198 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, H.: A note on the Jacobi fields on manifolds. Honam Math. J. 38(2), 385–391 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lemaire, M.: Boundary value problems for harmonic and minimal maps of surfaces into manifolds. Ann. Sc. Sup Pisa 4(9), 91–103 (1982)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Schulz, F.: Regularity Theory for Quasilinear Elliptic System and Monge–Ampére Equations in Two Dimensions, LMN 1445. Springer, Berlin (1990)CrossRefGoogle Scholar
  18. 18.
    Struwe, M.: Plateau’s Problem and the Calculus of Variations. Princeton University Press, Princeton (1998)zbMATHGoogle Scholar
  19. 19.
    Struwe, M.: A critical point theory for minimal surfaces spanning a wire in \({\mathbb{R}}^k\). J. Reine Angew. Math. 349, 1–23 (1984)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Struwe, M.: A Morse theory for annulus type minimal surfaces. J. Reine u. Angew. Math. 386, 1–27 (1986)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHannam UniversityDaejeonRepublic of Korea

Personalised recommendations