Improved Moser–Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions

Abstract

Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type

$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$

for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Adimurthi, A., Druet, O.: Blow-up analysis in dimension \(2\) and a sharp form of Trudinger-Moser inequality. Commun. Partial Differ. Equ. 29, 295–322 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Adimurthi, A., Yang Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \(\mathbb{R}^n\) and its applications. Int. Math. Res. Not. 13, 2394–2426 (2010)

  4. 4.

    Balogh, J., Manfredi, J., Tyson, J.: Fundamental solution for the \(Q-\)Laplacian and sharp Moser–Trudinger inequality in Carnot groups. J. Funct. Anal. 204, 35–49 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Černy, R., Cianchi, A., Hencl, S.: Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs. Ann. Math. Pura Appl. (4) 192(2), 225–243 (2013)

  7. 7.

    Chang, S.A., Yang, P.: Conformal deformation of metric on \(\mathbb{S}^2\). J. Differ. Geom. 27, 259–296 (1988)

    Article  Google Scholar 

  8. 8.

    Cianchi, A.: Moser–Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54, 669–705 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Csato, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in \(2\) dimensions. Calc. Var. Partial Differ. Equ. 54, 2341–2366 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Csato, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains. Commun. Partial Differ. Equ. 41, 838–847 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    de Figueiredo, D.G., do Ó, J.M.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55, 135–152 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    do Ó, J.M., de Souza, M.: A sharp inequality of Trudinger–Moser type and extremal functions in \(H^{1, n}(\mathbb{R}^n)\). J. Differ. Equ. 258, 4062–4101 (2015)

    Article  MATH  Google Scholar 

  14. 14.

    do Ó, J.M., de Souza, M.: Trudinger–Moser inequality on the whole plane and extremal functions. Commun. Contemp. Math. 18(5), 1550054 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Druet, O., Hebey, E., Robert, F.: Blow-Up Theory for Elliptic PDEs in Riemannian Geometry. Mathematical notes, vol. 45. Princeton University Press, Princeton (2004)

    Google Scholar 

  16. 16.

    Esposito P.: A classification result for the quasi-linear Liouville equation. Ann. Inst. H. Poincaré Anal. Nonlinéaire (to appear)

  17. 17.

    Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Li, Y.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equa. 14, 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Li, Y.: Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48, 618–648 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Lions, P.L.: The concentration–compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1, 145–201 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Lu G., Zhu M.: A sharp Moser–Trudinger type inequality involving \(L^n\) norm in the entire space \(\mathbb{R}^n\). arXiv:1703.00901

  26. 26.

    Mancini, G., Sandeep, K.: Moser–Trudinger inequality on conformal discs. Commun. Contemp. Math. 12, 1055–1068 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Mancini, G., Sandeep, K., Tintarev, C.: Trudinger–Moser inequality in the hyperbolic space \(\mathbb{H}^n\). Adv. Nonlinear Anal. 2, 309–324 (2013)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20:1077–1092 (1970/71)

  29. 29.

    Nguyen V.H.: Extremal functions for the Moser–Trudinger inequality of Adimurthi–Druet type in \(W^{1,n}(\mathbb{R}^n)\). arXiv:1702.07970

  30. 30.

    Nguyen, V.H.: Improved Moser–Trudinger inequality for functions with mean value zero in \(\mathbb{R}^n\) and its extremal functions. Nonlinear Anal. 163, 127–145 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\). Dokl. Akad. Nauk. SSSR 165, 36–39 (1965). (Russian)

    MathSciNet  Google Scholar 

  32. 32.

    Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R}^2\). J. Funct. Anal. 219, 340–367 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta. Math. 111, 248–302 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Struwe, M.: Critical points of embeddings of \(H^{1, n}_0\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Nonlinéaire 5, 425–464 (1988)

    Article  MATH  Google Scholar 

  35. 35.

    Tintarev, C.: Trudinger–Moser inequality with remainder terms. J. Funct. Anal. 266, 55–66 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Trudinger, N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239(1), 100–126 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Yang, Y.: Extremal functions for a sharp Moser–Trudinger inequality. Int. J. Math. 17, 331–338 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Yang, Y.: A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Am. Math. Soc. 359, 5761–5776 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Yang Y: Corrigendum to: a sharp form of Moser–Trudinger inequality in high dimension [J. Funct. Anal. 239, 100–126 (2006); MR2258218]. J. Funct. Anal. 242, 669–671 (2007)

  42. 42.

    Yang, Y.: Trudinger–Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894–1938 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258, 3161–3193 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Yang, Q., Su, D., Kong, Y.: Sharp Moser–Trudinger inequalities on Riemannian manifolds with negative curvature. Ann. Mat. Pura Appl. 195, 459–471 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Yuan, A., Zhu, X.: An improved singular Trudinger–Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244–252 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk. SSSR 138, 805–808 (1961). (Russian)

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Van Hoang Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H. Improved Moser–Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions. Ann Glob Anal Geom 54, 237–256 (2018). https://doi.org/10.1007/s10455-018-9599-z

Download citation

Keywords

  • Improved Moser–Trudinger inequality
  • Blow-up analysis
  • Extremal functions
  • Elliptic regularity theory

Mathematics Subject Classification

  • 26D10
  • 46E35