Skip to main content
Log in

The m-accretivity of covariant Schrödinger operators with unbounded drift

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We work in the context of a geodesically complete Riemannian n-manifold M with a Hermitian vector bundle \(\mathcal {V}\) over M, equipped with a metric covariant derivative \(\nabla \). We study the operator \(H:=\nabla ^{\dagger }\nabla +\nabla _{X}+V\), where \(\nabla ^{\dagger }\) is the formal adjoint of \(\nabla \), the symbol \(\nabla _{X}\) stands for the action of \(\nabla \) along a smooth vector field X on M, and V is a locally bounded section of the endomorphism bundle \({\text {End}}\mathcal {V}\). We show that under certain conditions on X and V, the closure \(\overline{H|_{C_{c}^{\infty }(\mathcal {V})}}\) of \(H|_{C_{c}^{\infty }(\mathcal {V})}\) in \(L^p(\mathcal {V})\), where \(1<p<\infty \), is a maximal accretive operator. We also show that \(\overline{H|_{C_{c}^{\infty }(\mathcal {V})}}\) coincides with the “maximal” realization of H in \(L^p(\mathcal {V})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 1, pp. 1–85. North-Holland, Amsterdam (2004)

    Google Scholar 

  2. Arendt, W., Batty, C.J.K., Charles, J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Birkhäuser Verlag, Basel (2001)

    Book  MATH  Google Scholar 

  3. Arendt, W., Metafune, G., Pallara, D.: Gaussian estimates for elliptic operators with unbounded drift. J. Math. Anal. Appl. 338, 505–517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 94. Springer, New York (2000)

    MATH  Google Scholar 

  5. Güneysu, B.: The Feynman–Kac formula for Schrödinger operators on vector bundles over complete manifolds. J. Geom. Phys. 60, 1997–2010 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262, 4639–4674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications, vol. 264. Birkhäuser, Basel (2017)

    MATH  Google Scholar 

  8. Güneysu, B.: The BMS-conjecture. Ulmer Seminare 20, 97–101 (2016/2017)

  9. Güneysu, B., Pigola, S.: \(L^p\)-interpolation inequalities and global Sobolev regularity results. Ann. Mat. Pura Appl. (2018). https://doi.org/10.1007/s10231-018-0763-7

  10. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1980)

    MATH  Google Scholar 

  11. Kato, T.: \(L^p\)-theory of Schrödinger operators with a singular potential. In: Nagel, R., Schlotterbeck, U., Wolff, M.P.H. (eds.) Aspects of Positivity in Functional Analysis. North-Holland Mathematics Studies, vol. 122, pp. 63–78. North-Holland, Amsterdam (1986)

    Google Scholar 

  12. Leinfelder, H., Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Metafune, G., Ouhabaz, E., Pallara, D.: Long time behavior of heat kernels of operators with unbounded drift terms. J. Math. Anal. Appl. 377, 170–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Metafune, G., Pallara, D., Rabier, P., Schnaubelt, R.: Uniqueness for elliptic operators on \(L^p({\mathbb{R}}^n)\) with unbounded coefficients. Forum Math. 22, 583–601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milatovic, O.: On \(m\)-accretivity of perturbed Bochner Laplacian in \(L^p\)-spaces on Riemannian manifolds. Integral Equations Operator Theory 68, 243–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nicolaescu, L.I.: Lectures on the Geometry of Manifolds. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)

    Book  MATH  Google Scholar 

  17. Ouhabaz, E.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton, NJ (2005)

    MATH  Google Scholar 

  18. Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7, 447–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded coefficients. J. Evol. Equ. 12, 957–971 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded drift. Sūrikaisekikenkyūsho Kōkyūroku 1856, 75–88 (2013)

    Google Scholar 

  21. Sobajima, M.: \(L^p\)-theory for second-order elliptic operators with unbounded coefficients in an endpoint class. J. Evol. Equ. 14, 461–475 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Springer, New York (1996)

    MATH  Google Scholar 

  24. Thalmaier, A., Thompson, J.: Derivative and divergence formulae for diffusion semigroups. Ann. Prob. (to appear)

Download references

Acknowledgements

We thank Hemanth Saratchandran for writing the proof of part (iv) of Lemma 2. We also use this opportunity to express our gratitude to the referees for valuable comments and suggestions and for drawing our attention to the paper [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Milatovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Accretivity and m-accretivity of operators in Banach spaces

In this section, we briefly review some abstract notions. A linear operator T on a Banach space \({\mathscr {B}}\) is called accretive if

$$\begin{aligned} \Vert (\xi +T)u\Vert _{{\mathscr {B}}}\ge \xi \Vert u\Vert _{{\mathscr {B}}}, \end{aligned}$$

for all \(\xi >0\) and all \(u\in {\text {Dom}}(T)\). We note that instead of “T is accretive,” some authors say “\(-T\) is dissipative.” If T is a densely defined accretive operator, then T is closable and its closure \(\overline{T}\) is also accretive; see Proposition II.3.14 in [4]. There is another description of accretivity. Denoting by \({\mathscr {B}}^{*}\) the dual space of \({\mathscr {B}}\) and using Hahn–Banach theorem, for every \(u\in {\mathscr {B}}\) there exists \(u^*\in {\mathscr {B}}^*\) such that \(\langle u,u^*\rangle =\Vert u\Vert _{{\mathscr {B}}}^2=\Vert u^*\Vert _{{\mathscr {B}}^*}^2\). Here, \(\langle u,u^*\rangle \) stands for the evaluation of the functional \(u^*\) at u. For every \(u \in {\mathscr {B}}\), define

$$\begin{aligned} {\mathscr {J}}(u) :=\{u^*\in {\mathscr {B}}^*:\langle u,u^*\rangle =\Vert u\Vert _{{\mathscr {B}}}^2=\Vert u^*\Vert _{{\mathscr {B}}^*}^2\}. \end{aligned}$$

By Proposition II.3.23 of [4], an operator T is accretive if and only if for every \(u\in {\text {Dom}}(T)\) there exists \(j(u)\in {\mathscr {J}}(u)\) such that

$$\begin{aligned} {\text {Re}}\langle Tu,j(u)\rangle \ge 0. \end{aligned}$$

A (densely defined) operator T on \({\mathscr {B}}\) is called m-accretive if it is accretive and \(\xi +T\) is surjective for all \(\xi >0\). A (densely defined) operator T on \({\mathscr {B}}\) is called essentiallym-accretive if it is accretive and \(\overline{T}\) is m-accretive. As indicated in Theorem II.3.15 of [4], the negative \(-T\) of an m-accretive operator T on \({\mathscr {B}}\) generates a strongly continuous contraction semigroup. There is a link between m-accretivity and self-adjointness of operators on Hilbert spaces: T is a self-adjoint and nonnegative operator if and only if T is symmetric, closed, and m-accretive; see Problem V.3.32 in [10].

B Proof of Lemma 2

Let \(U\subset M\) be a coordinate chart around \(x\in M\) which admits a smooth orthonormal frame \(e_1,\dots ,e_m\in C^{\infty }(U;\mathcal {V})\), where \(m={\text {rank}}\mathcal {V}\). Denote the local coordinates in U as \(x_1,\cdots ,x_n\) and the corresponding basis of tangent vectors as \(\partial _i\), \(1 \le i \le n\). Then, as seen in section 3.3.1 of [16], there exists a (necessarily unique) matrix of 1-forms

$$\begin{aligned} F=(F^{s}_{t})\in {\mathrm {Mat}}\big (C^{\infty }(U; T^*M); m\times m\big ) \end{aligned}$$

such that (using Einstein summation convention)

$$\begin{aligned} \nabla _{|U} (u^{s}{e_s}) = (\partial _{r} u^{s}) \mathrm{d}x^r\otimes e_s + u^{t}F^{s}_{rt} \mathrm{d}x^{r}\otimes e_s, \end{aligned}$$
(65)

for all \(u\in [W^{1,1}_{{\text {loc}}}(U)]^m\cap [L_{{\text {loc}}}^{\infty }(U)]^m\).

Before starting the actual proof of the lemma, we record a preliminary formula. Recalling the definition \(\omega _u(Y) := {\text {Re}}\langle \nabla _Yu, u\rangle \), where Y is a smooth vector field, and using (65), we have

$$\begin{aligned}&\omega _u(\partial _i) = {\text {Re}}\langle \nabla _{\partial _i}u, u\rangle = {\text {Re}}\langle \big (u^jF_{ij}^k + \partial _i(u^k)\big )e_k, u^le_l\rangle \\&\quad = {\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^l}\delta _{kl}\bigg )= \sum _{k=1}^{m}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ), \end{aligned}$$

which leads to the following local formula for \(\omega _u\):

$$\begin{aligned} \omega _u = \sum _{k=1}^{m}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg )\mathrm{d}x^i. \end{aligned}$$
(66)

We now prove the properties (i) and (ii). These are the only two parts of the lemma where we use the assumption that \(\nabla \) is a metric covariant derivative. In this case, the local connection 1-form \(F=(F^{s}_{t})\) is skew-adjoint, that is, \(\overline{F^{t}_{s}}=-F^{s}_{t}\), and formula (66) simplifies to

$$\begin{aligned} \omega _u(\partial _{i}) = \sum _{k=1}^{m}{\text {Re}}\big (\partial _i(u^k)\overline{u^k}\big ). \end{aligned}$$
(67)

As the component functions \(u^s\), \(1\le s\le m\), are complex-valued with \(v^s:={\text {Re}}u^s\) and \(w^s:={\text {Im}}u^s\), we may view the fiberwise norm \(|\cdot |\) in \(\mathcal {V}\) as

$$\begin{aligned} |u|^2=\displaystyle \sum _{s=1}^{m}((v^s)^2+(w^s)^2). \end{aligned}$$

We can now use Theorem A of [12] to conclude that the composition of \(|\cdot |\) and u satisfy \(|u|\in W^{1,1}_{{\text {loc}}}(U)\). Again, by Theorem A of [12] we have for all \(1\le i\le n\):

$$\begin{aligned} \partial _{i}|u|=\frac{1}{|u|}\sum _{s=1}^{m}(v^s\partial _{i}v^s+w^s\partial _{i}w^s), \end{aligned}$$
(68)

for all x such that \(u(x)\ne 0\), and \(\partial _{i}|u|=0\) for all x such that \(u(x)=0\). Note that the right-hand side of (68) is the same as

$$\begin{aligned} \frac{1}{|u|}\sum _{s=1}^{m}{\text {Re}}\big (\partial _i(u^s)\overline{u^s}\big ), \end{aligned}$$

which together with (67) leads to

$$\begin{aligned} \partial _{i}|u|=\frac{1}{|u|}\omega _u(\partial _{i}) =\frac{1}{|u|}{\text {Re}}\langle \nabla _{\partial _{i}} u, u\rangle , \end{aligned}$$

for all x such that \(u(x)\ne 0\), and \(\partial _{i}|u|=0\) for all x such that \(u(x)=0\). This shows parts (i) and (ii) of the lemma.

For part (iii), see the proof of equation (1.34) in “Appendix C” of [23]. We now turn to part (iv). We start by expanding the right-hand side:

$$\begin{aligned}&\langle \omega _u, \omega _u\rangle \\&\quad = \bigg \langle \sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg )\mathrm{d}x^i , \sum _{l}{\text {Re}}\bigg (\big (u^tF_{rt}^l + \partial _r(u^l)\big )\overline{u^l}\bigg )\mathrm{d}x^r\bigg \rangle \\&\quad = \sum _{k, l}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ) {\text {Re}}\bigg (\big (u^tF_{rt}^l + \partial _r(u^l)\big )\overline{u^l}\bigg )g^{ir}, \end{aligned}$$

where \(g^{ir} = \langle \mathrm{d}x^i, \mathrm{d}x^r\rangle \) denotes the metric on \(T^*M\).

We now expand the left-hand side:

$$\begin{aligned}&{\text {Re}}\langle \omega _u \otimes u, \nabla u\rangle \\&\quad ={\text {Re}}\bigg \langle \sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg )\mathrm{d}x^i \otimes u^le_l, (\partial _ru^s + u^tF_{rt}^s)\mathrm{d}x^r\otimes e_s\bigg \rangle \\&\quad = {\text {Re}}\bigg (\sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg )u^l \bigg (\overline{\partial _ru^s + u^tF_{rt}^s}\bigg )g^{ir}\delta _{ls}\bigg ) \\&\quad = {\text {Re}}\bigg (\sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg )\sum _lu^l \bigg (\overline{\partial _ru^l + u^tF_{rt}^l}\bigg )g^{ir}\bigg ). \end{aligned}$$

Keeping in mind the properties

$$\begin{aligned} {\text {Re}}(\alpha z_1)=\alpha ({\text {Re}}z_1),\quad {\text {Re}}(z_1\overline{z_2})= {\text {Re}}(\overline{z_1}{z_2}), \end{aligned}$$

which hold for all \(\alpha \in {\mathbb {R}}\) and \(z_1,z_2\in {\mathbb {C}}\), we obtain

$$\begin{aligned}&{\text {Re}}\bigg (\sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ) \sum _lu^l \bigg (\overline{\partial _ru^l + u^tF_{rt}^l}\bigg )g^{ir}\bigg ) \\&\quad =\sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ) \sum _l{\text {Re}}\bigg (u^l \bigg (\overline{\partial _ru^l + u^tF_{rt}^l}\bigg )g^{ir}\bigg ) \\&\quad = \sum _{k}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ) \sum _l{\text {Re}}\bigg (\overline{u^l} \bigg (\partial _ru^l + u^tF_{rt}^l\bigg )\bigg )g^{ir} \\&\quad = \sum _{k, l}{\text {Re}}\bigg (\big (u^jF_{ij}^k + \partial _i(u^k)\big )\overline{u^k}\bigg ) {\text {Re}}\bigg ( \bigg (\partial _ru^l + u^tF_{rt}^l\bigg )\overline{u^l}\bigg )g^{ir}. \end{aligned}$$

Therefore, \(\langle \omega _u, \omega _u\rangle ={\text {Re}}\langle \omega _u \otimes u, \nabla u\rangle \), and this concludes the proof of part (iv). Part (v) is a direct consequence of part (iv) of this lemma. Part (vi) can be shown similarly as part (iv). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milatovic, O. The m-accretivity of covariant Schrödinger operators with unbounded drift. Ann Glob Anal Geom 55, 657–679 (2019). https://doi.org/10.1007/s10455-018-09645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-09645-6

Keywords

Mathematics Subject Classification

Navigation