Skip to main content
Log in

Witten’s perturbation on strata with general adapted metrics

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let M be a stratum of a compact stratified space A. It is equipped with a general adapted metric g, which is slightly more general than the adapted metrics of Nagase and Brasselet–Hector–Saralegi. In particular, g has a general type, which is an extension of the type of an adapted metric. A restriction on this general type is assumed, and then, g is called good. We consider the maximum/minimum ideal boundary condition, \(d_{\mathrm{max/min}}\), of the compactly supported de Rham complex on M, in the sense of Brüning–Lesch. Let \(H^*_{\mathrm{max/min}}(M)\) and \(\Delta _{\mathrm{max/min}}\) denote the cohomology and Laplacian of \(d_{\mathrm{max/min}}\). The first main theorem states that \(\Delta _{\mathrm{max/min}}\) has a discrete spectrum satisfying a weak form of the Weyl’s asymptotic formula. The second main theorem is a version of Morse inequalities using \(H_{\mathrm{max/min}}^*(M)\) and what we call rel-Morse functions. An ingredient of the proofs of both theorems is a version for \(d_{\mathrm{max/min}}\) of the Witten’s perturbation of the de Rham complex. Another ingredient is certain perturbation of the Dunkl harmonic oscillator previously studied by the authors using classical perturbation theory. The condition on g to be good is general enough in the following sense. Assume that A is a stratified pseudomanifold, and consider its intersection homology \(I^{\bar{p}}H_*(A)\) with perversity \(\bar{p}\); in particular, the lower and upper middle perversities are denoted by \(\bar{m}\) and \(\bar{n}\), respectively. Then, for any perversity \(\bar{p}\le \bar{m}\), there is an associated good adapted metric on M satisfying the Nagase isomorphism \(H^r_{\mathrm{max}}(M)\cong I^{\bar{p}}H_r(A)^*\) (\(r\in \mathbb {N}\)). If M is oriented and \(\bar{p}\ge \bar{n}\), we also get \(H^r_{\mathrm{min}}(M)\cong I^{\bar{p}}H_r(A)\). Thus our version of the Morse inequalities can be described in terms of \(I^{\bar{p}}H_*(A)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Kronecker’s delta symbol is used.

  2. Recall that a complex number is in the discrete spectrum of a normal operator in a Hilbert space when it is an eigenvalue of finite multiplicity.

  3. Recall that ellipticity means that the sequence of principal symbols of the operators \(d_r\) is exact over every nonzero cotangent vector.

  4. The superindex \(\dag \) is used to denote the formal adjoint.

  5. We may also use Table 5 and Proposition 4.2 for some values of \(\kappa \) (Tables 6, 7).

  6. Recall that, for Hilbert spaces \(\mathfrak {H}'\) and \(\mathfrak {H}''\), with scalar products \(\langle \ ,\ \rangle '\) and \(\langle \ ,\ \rangle ''\), the notation \(\mathfrak {H}'\,\widehat{\otimes }\,\mathfrak {H}''\) is used for the Hilbert space tensor product. This is the Hilbert space completion of the algebraic tensor product \(\mathfrak {H}'\otimes \mathfrak {H}''\) with respect to the scalar product defined by \(\langle u'\otimes u'',v'\otimes v''\rangle =\langle u',v'\rangle '\,\langle u'',v''\rangle ''\).

  7. Consider a family of Hilbert spaces, \(\mathfrak {H}_a\) with scalar product \(\langle \ ,\ \rangle _a\). Recall that the Hilbert space direct sum, \(\widehat{\bigoplus }_a\mathfrak {H}^a\), is the Hilbert space completion of the algebraic direct sum, \(\bigoplus _a\mathfrak {H}^a\), with respect to the scalar product \(\langle (u^a),(v^a)\rangle =\sum _a\langle u^a,v^a\rangle _a\). Thus \(\widehat{\bigoplus }_a\mathfrak {H}^a=\bigoplus _a\mathfrak {H}^a\) if and only if the family is finite.

  8. A similar argument is made in the proof of [4, Corollary 12.13-(viii)]. In that case, the authors use a strictly decreasing function \(f:(-\infty ,a]\rightarrow [0,\infty )\). The resulting estimate should be

    $$\begin{aligned} \mathfrak {N}^\pm _{s,\mathrm{max/min}}(\lambda )\le \int _0^af(x)\,\hbox {d}x+f(0)+a+1, \end{aligned}$$

    but the terms \(f(0)+a+1\) were missing in that publication. This correction does not affect the final estimate of \(\mathfrak {N}^\pm _{s,\mathrm{max/min}}(\lambda )\) obtained there.

References

  1. Albin, P., Leichtnam, É., Mazzeo, R., Piazza, P.: Hodge theory on Cheeger spaces. J. Reine Angew. Math. arXiv:1307.5473v2

  2. Albin, P., Leichtnam, É., Mazzeo, R., Piazza, P.: The signature package on Witt spaces. Ann. Sci. Éc. Norm. Supér. (4) 45, 241–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez López, J.A., Calaza, M.: Embedding theorems for the Dunkl harmonic oscillator. Symmetry Integrability Geom. Methods Appl. 10, 004 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Álvarez López, J.A., Calaza, M.: Witten’s perturbation on strata. Asian J. Math. 21(1), 47–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Álvarez López, J.A., Calaza, M., Franco, C.: A perturbation of the Dunkl harmonic oscillator on the line. Symmetry Integrability Geom. Methods Appl. 11, 059 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bismut, J.-M., Zhang, W.: Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle. Geom. Funct. Anal. 4(2), 136–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brasselet, J.P., Hector, G., Saralegi, M.: Théorème de De Rham pour les variétés stratifiées. Ann. Glob. Anal. Geom. 9(3), 211–243 (1991)

    Article  MATH  Google Scholar 

  8. Brasselet, J.P., Hector, G., Saralegi, M.: \(L^2\)-cohomologie des espaces stratifiés. Manuscr. Math. 76(1), 21–32 (1992)

    Article  MATH  Google Scholar 

  9. Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brüning, J., Lesch, M.: Kähler–Hodge theory for conformal complex cones. Geom. Funct. Anal. 3(5), 439–473 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brylinski, J.-L.: Equivariant Intersection Cohomology, Kazhdan–Lusztig Theory and Related Topics (Chicago, IL, 1989) Contemporary Mathematics, vol. 139, pp. 5–32. American Mathematical Society, Providence (1992)

    Google Scholar 

  12. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. In: Geometry of the Laplace Operator (University of Hawaii, Honolulu, Hawaii, 1979). Proceedings of Symposia in Pure Mathematics, vol. XXXVI, pp. 91–146. American Mathematical Society, Providence (1980)

  13. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18(4), 575–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Goresky, M., MacPherson, R.: \(L^2\)-Cohomology and Intersection Homology of Singular Varieties. Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, pp. 302–340. Princeton University Press, Princeton (1982)

    Google Scholar 

  15. Cohen, D.C., Goresky, M., Ji, L.: On the Künneth formula for intersection cohomology. Trans. Am. Math. Soc. 333(1), 63–69 (1992)

    MATH  Google Scholar 

  16. Debord, C., Lescure, J.-M., Nistor, V.: Groupoids and an index theorem for conical pseudo-manifolds. J. Reine Angew. Math. 628, 1–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedman, G.: Intersection homology Künneth theorems. Math. Ann. 343(2), 371–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedman, G.: An Introduction to Intersection Homology with General Perversity Functions. Topology of Stratified Spaces. Mathematical Sciences Research Institute Publications, vol. 58, pp. 177–222. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  19. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goresky, M., MacPherson, R.: Intersection homology II. Invent. Math. 71(1), 77–129 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goresky, M., MacPherson, R.: Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiet, vol. 14. Springer, Berlin (1988)

    MATH  Google Scholar 

  22. Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique. IV. étude du complexe de Witten. Commun. Partial Differ. Equ. 10(3), 245–340 (1985)

    Article  MATH  Google Scholar 

  23. Hunsicker, E., Mazzeo, R.: Harmonic forms on manifolds with edges. Int. Math. Res. Not. 2005(52), 3229–3272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kato, T.: Perturbation Theory for Linear Operators Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  Google Scholar 

  25. Lesch, M.: Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods. Teubner-Texte zur Mathematik, vol. 136. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1997)

    Google Scholar 

  26. Ludwig, U.: The geometric complex for algebraic curves with cone-like singularities and admissible Morse functions. Ann. Inst. Fourier (Grenoble) 60(5), 1533–1560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ludwig, U.: A proof of stratified Morse inequalities for singular complex algebraic curves using Witten deformation. Ann. Inst. Fourier 61(5), 1749–1777 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ludwig, U.: The Witten complex for singular spaces of dimension 2 with cone-like singularities. Math. Nachrichten 284(5–6), 717–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ludwig, U.: The Witten deformation for even dimensional conformally conic manifolds. Trans. Am. Math. Soc. 365(2), 885–909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ludwig, U.: Comparison between two complexes on a singular space. J. Reine Angew. Math. 724, 1–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mather, J.N.: Notes on Topological Stability. Mimeographed Notes. Hardvard University, Hardvard (1970)

    Google Scholar 

  32. Mather, J. N.: Stratifications and mappings. In: Dynamical Systems (Proceedings of Symposia, University of Bahia, Salvador, 1971), pp. 195–232. Academic Press, New York (1973)

  33. Nagase, N.: \(L^2\)-cohomology and intersection cohomology of stratified spaces. Duke Math. J. 50(1), 329–368 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nagase, N.: Sheaf Theoretic \(L^2\)-Cohomology, Complex Analytic Singularities. Advanced Studies in Pure Mathematics, vol. 8, pp. 273–279. North-Holland, Amsterdam (1986)

    Google Scholar 

  35. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  36. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Pitman Research Notes in Mathematics, vol. 395, 2nd edn. Longman, Harlow (1998)

    Google Scholar 

  37. Saralegi, M.: Homological properties of stratified spaces. Ill. J. Math. 38(1), 47–70 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Saralegi, M.: de Rham intersection cohomology for general perversities. Ill. J. Math. 49(3), 737–758 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Schulze, B.W.: The iterative structure of corner operators. arXiv:0905.0977

  40. Szegö, G.: Orthogonal Polynomials, Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  41. Thom, R.: Ensembles et morphismes stratifiés. Bull. Am. Math. Soc. 75, 240–284 (1969)

    Article  MATH  Google Scholar 

  42. Verona, A.: Stratified Mappings—Structure and Triangulability. Lecture Notes in Mathematics, vol. 1102. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  43. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 123, 6th edn. Springer, Berlin (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. Álvarez López.

Additional information

The first author is partially supported by MICINN, Grant MTM2011-25656, and by MEC, Grant MTM2014-56950-P. The third author has received financial support from the Xunta de Galicia and the European Union (European Social Fund—ESF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez López, J.A., Calaza, M. & Franco, C. Witten’s perturbation on strata with general adapted metrics. Ann Glob Anal Geom 54, 25–69 (2018). https://doi.org/10.1007/s10455-017-9592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9592-y

Keywords

Mathematics Subject Classification

Navigation