Skip to main content
Log in

An energy functional for Lagrangian tori in \(\mathbb {C}P^2\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A two-dimensional periodic Schrödingier operator is associated with every Lagrangian torus in the complex projective plane \({\mathbb C}P^2\). Using this operator, we introduce an energy functional on the set of Lagrangian tori. It turns out this energy functional coincides with the Willmore functional \(W^{-}\) introduced by Montiel and Urbano. We study the energy functional on a family of Hamiltonian-minimal Lagrangian tori and support the Montiel–Urbano conjecture that the minimum of the functional is achieved by the Clifford torus. We also study deformations of minimal Lagrangian tori and show that if a deformation preserves the conformal type of the torus, then it also preserves the area, i.e., preserves the value of the energy functional. In particular, the deformations generated by Novikov–Veselov equations preserve the area of minimal Lagrangian tori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carberry, E., McIntosh, I.: Minimal Lagrangian 2-tori in \({\mathbb{C}}P^2\) come in real families of every dimension. J. Lond. Math. Soc. (2) 69(2), 531–544 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castro, I., Urbano, F.: New examples of minimal Lagrangian tori in the complex projective plane. Manuscr. Math. 85, 265–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dorfmeister, J.F., Ma, H.: Explicit expressions for the Iwasawafactors, the metric and the monodromy matrices for minimal Lagrangian surfaces in \(\mathbb{C}P^2\). In: Dynamical Systems, Numbertheory and Applications, pp. 19–47. World Science Publishing, Hackensack (2016)

  4. Dorfmeister, J.F., Ma, H.: A new look at equivariant minimal Lagrangian surfaces in \(\mathbb{C}P^2\). In: Geometry and Topology of Manifolds, pp. 97–125. Springer Proc. Math. Stat., vol. 154. Springer, Berlin (2016)

  5. Haskins, H.: The geometric complexity of special Lagrangian \(T^2\)-cones. Invent. Math. 157(1), 11–70 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. v. Survey and applications. J. Differ. Geom. 63(2), 279–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, H., Ma, Y.: Totally real minimal tori in \(\mathbb{C}P^2\). Math. Z. 249(2), 241–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, H.: Hamiltonian stationary Lagrangian surfaces in \(\mathbb{C}P^2\). Ann. Glob. Anal. Geom. 27, 1–16 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ma, H., Schmies, M.: Examples of Hamiltonian stationary Lagrangian tori in \(\mathbb{C}P^2\). Geom. Dedicata 118, 173–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marques, F.C., Neves, A.: Min–max theory and the Willmore conjecture. Ann. Math. 2(179), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mironov, A.E.: The Novikov–Veselov hierarchy of equations and integrable deformations of minimal Lagrangian tori in \(\mathbb{C}P^2\). (Russian) Sib. Elektron. Mat. Izv. 1, 38–46 (also arXiv:math/0607700v1) (2004)

  12. Mironov, A.E.: New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \({\mathbb{C}}^n\) and \({\mathbb{C}}P^n.\). Sb. Math. 195(1), 85–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mironov, A.E.: Relationship between symmetries of the Tzitzéica equation and the Novikov–Veselov hierarchy. Math. Notes 82(4), 569–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Montiel, S., Urbano, F.: A Willmore functional for compact surfaces in the complex projective plane. J. Reine Angew. Math. 546, 139–154 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Oh, Y.: Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z. 212, 175–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sharipov, R.A.: Minimal tori in the five-dimensional sphere in \({\mathbb{C}}^3\). Theor. Math. Phys. 87(1), 363–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Taimanov, I.A.: Two-dimensional Dirac operator and the theory of surfaces. Rus. Math. Surv. 61(1), 79–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taimanov, I.A.: Modified Novikov–Veselov equation and differential geometry of surfaces. Am. Math. Soc. Transl. Ser. 2 179, 133–151 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Veselov, A.P., Novikov, S.P.: Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations (Russian). Dokl. Akad. Nauk SSSR 279(1), 20–24 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to professor Yong Luo and professor Iskander Taimanov for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafeng Zuo.

Additional information

Hui Ma was supported in part by NSFC Grant No. 11271213. Andrey E. Mironov was supported by the Russian Foundation for Basic Research (Grant 16-51-55012) and by a Grant from Dmitri Zimin’s Dynasty foundation. Dafeng Zuo was supported in part by NSFC (Grant Nos. 11671371, 11371338) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Mironov, A.E. & Zuo, D. An energy functional for Lagrangian tori in \(\mathbb {C}P^2\) . Ann Glob Anal Geom 53, 583–595 (2018). https://doi.org/10.1007/s10455-017-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9589-6

Keywords

Navigation