# Strongly positive curvature

## Abstract

We begin a systematic study of a curvature condition (strongly positive curvature) which lies strictly between positive-definiteness of the curvature operator and positivity of sectional curvature, and stems from the work of Thorpe (J Differ Geom 5:113–125, 1971; Erratum. J Differ Geom 11:315, 1976). We prove that this condition is preserved under Riemannian submersions and Cheeger deformations and that most compact homogeneous spaces with positive sectional curvature satisfy it.

## Keywords

Riemannian geometry Algebraic curvature operators Riemannian submersion Positive sectional curvature Homogeneous spaces## Mathematics Subject Classification

53B20 53C20 53C21 53C30 53C35## Notes

### Acknowledgements

It is a pleasure to thank Karsten Grove, Thomas Püttmann, Luigi Verdiani and Wolfgang Ziller for their constant interest in this project and many valuable suggestions. We also thank Amy Buchmann, David Johnson, and Martin Kerin for helpful conversations on related subjects.

## References

- 1.Aloff, S., Wallach, N.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc.
**81**, 93–97 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 2.Bérard-Bergery, L.: Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. Pures Appl.
**55**, 47–67 (1976)MathSciNetzbMATHGoogle Scholar - 3.Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa (3)
**15**, 179–246 (1961)MathSciNetzbMATHGoogle Scholar - 4.Besse, A.: Einstein Manifolds. Reprint of the 1987 edition. Classics in Mathematics. Springer, Berlin (2008)Google Scholar
- 5.Bettiol, R.G.: On Different Notions of Positivity of Curvature. Ph.D. thesis. University of Notre Dame. (2015). 180 p. ISBN: 978-1339-17924-7Google Scholar
- 6.Bettiol, R.G., Mendes, R.A.E.: Flag manifolds with strongly positive curvature. Math. Z.
**280**(3–4), 1031–1046 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Bettiol, R.G., Mendes, R.A.E.: Strongly nonnegative curvature. Math. Ann.
**368**(3–4), 971–986 (2017)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Böhm, C., Wilking, B.: Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Funct. Anal.
**17**(3), 665–681 (2007)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math.
**167**, 1079–1097 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Browder, W.: Higher torsion in \(H\)-spaces. Trans. Am. Math. Soc.
**108**, 353–375 (1963)MathSciNetzbMATHGoogle Scholar - 11.Cheeger, J.: Some examples of manifolds of nonnegative curvature. J. Differ. Geom.
**8**, 623–628 (1973)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Chern, S.S.: On curvature and characteristic classes of a Riemann manifold. Abh. Math. Sem. Univ. Hamburg
**20**, 117–126 (1955)MathSciNetCrossRefzbMATHGoogle Scholar - 13.Dearricott, O.: A 7-manifold with positive curvature. Duke Math. J.
**158**(2), 307–346 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Eschenburg, J.-H.: New examples of manifolds with strictly positive curvature. Invent. Math.
**66**(3), 469–480 (1982)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Eschenburg, J.-H.: Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen. Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, 32. Der Universität (1984)Google Scholar
- 16.Geroch, R.: Positive sectional curvatures does not imply positive Gauss–Bonnet integrand. Proc. Am. Math. Soc.
**54**, 267–270 (1976)MathSciNetCrossRefzbMATHGoogle Scholar - 17.Grove, K.: Geometry of, and via, symmetries, Conformal, Riemannian and Lagrangian geometry 31–53, Univ. Lecture Ser., 27, Amer. Math. Soc., Providence, RI (2002)Google Scholar
- 18.Grove, K., Verdiani, L., Ziller, W.: An exotic \(T_1S^4\) with positive curvature. Geom. Funct. Anal.
**21**(3), 499–524 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 19.Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics, 80. Academic Press, Inc., New York-London (1978)Google Scholar
- 20.Jacobowitz, H.: Curvature operators on the exterior algebra. Linear Multilinear Algebra
**7**(2), 93–105 (1979)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Klembeck, P.: On Geroch’s counterexample to the algebraic Hopf conjecture. Proc. Am. Math. Soc.
**59**(2), 334–336 (1976)MathSciNetzbMATHGoogle Scholar - 22.Kulkarni, R.: On the Bianchi Identities. Math. Ann.
**199**, 175–204 (1972)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Müter, M.: Krümmungserhöhende Deformationen mittels Gruppenaktionen. Ph.D. thesis, University of Münster (1987)Google Scholar
- 24.Püttmann, T.: Optimal pinching constants of odd-dimensional homogeneous spaces. Invent. Math.
**138**, 631–684 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 25.Püttmann, T.: Private communication (2013)Google Scholar
- 26.Singer, I.M., Thorpe, J.A.: The curvature of 4-dimensional Einstein spaces. Global Analysis (Papers in Honor of K. Kodaira) pp. 355–365 Univ. Tokyo Press, Tokyo (1969)Google Scholar
- 27.Thorpe, J.A.: The zeros of nonnegative curvature operators. J. Differ. Geom.
**5**, 113–125 (1971); Erratum. J. Differ. Geom.**11**, 315 (1976)Google Scholar - 28.Thorpe, J.A.: On the curvature tensor of a positively curved 4-manifold. In: Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ., Halifax, N.S., 1971), Vol. 2, pp. 156–159. Canad. Math. Congr., Montreal, Que. (1972)Google Scholar
- 29.Verdiani, L., Ziller, W.: Positively curved homogeneous metrics on spheres. Math. Z.
**261**(3), 473–488 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 30.Wallach, N.R.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math.
**96**, 277–295 (1972)MathSciNetCrossRefzbMATHGoogle Scholar - 31.Weinstein, A.: Fat bundles and symplectic manifolds. Adv. Math.
**37**(3), 239–250 (1980)MathSciNetCrossRefzbMATHGoogle Scholar - 32.Wilking, B., Ziller, W.: Revisiting homogeneous spaces with positive curvature. J. Reine Angew. Math. (2015). doi: 10.1515/crelle-2015-0053
- 33.Ziller, W.: Examples of Riemannian manifolds with non-negative sectional curvature. Surveys in differential geometry. Vol. XI, 63-102, Surv. Differ. Geom., 11, Int. Press, Somerville, MA (2007)Google Scholar
- 34.Ziller, W.: On M. Mueter’s Ph.D. Thesis on Cheeger deformations. arXiv:0909.0161
- 35.Ziller, W.: Fatness Revisited. Notes. www.math.upenn.edu/~wziller/papers/Fat-09.pdf
- 36.Zoltek, S.: Nonnegative curvature operators: some nontrivial examples. J. Differ. Geom.
**14**, 303–315 (1979)MathSciNetCrossRefzbMATHGoogle Scholar