Annals of Global Analysis and Geometry

, Volume 52, Issue 4, pp 465–482 | Cite as

The index of Callias-type operators with Atiyah–Patodi–Singer boundary conditions

  • Pengshuai Shi


We compute the index of a Callias-type operator with APS boundary condition on a manifold with compact boundary in terms of combination of indexes of induced operators on a compact hypersurface. Our result generalizes the classical Callias-type index theorem to manifolds with compact boundary.


Callias-type operator Atiyah–Patodi–Singer boundary condition Index theory 



I am very grateful to Prof. Maxim Braverman for bringing this problem to my attention and offering valuable suggestions. I would also like to thank Simone Cecchini and Chris Kottke for helpful discussions. Finally, I appreciate the constructive comments and suggestions by the reviewers.


  1. 1.
    Anghel, N.: \(L^2\)-index formulae for perturbed Dirac operators. Commun. Math. Phys. 128(1), 77–97 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anghel, N.: An abstract index theorem on noncompact Riemannian manifolds. Houst. J. Math. 19(2), 223–237 (1993)MathSciNetMATHGoogle Scholar
  3. 3.
    Anghel, N.: On the index of Callias-type operators. Geom. Funct. Anal. 3(5), 431–438 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Atiyah, M.F. Bott, R.: The index problem for manifolds with boundary. In: Differential Analysis, Bombay Colloq., 1964, pp. 175–186. Oxford UnivERSITY Press, London (1964)Google Scholar
  5. 5.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bär, C. Ballmann,W.: Boundary value problems for elliptic differential operators of first order. In: Surveys in Differential Geometry., Volume 17 of Surv. Differ. Geom., pp. 1–78. Int. Press, Boston (2012)Google Scholar
  7. 7.
    Bär, C. Ballmann ,W.: Guide to elliptic boundary value problems for Dirac-type operators. In: Arbeitstagung Bonn 2013, Volume 319 of Progr. Math., pp. 43–80. Birkhäuser/Springer, Cham (2016)Google Scholar
  8. 8.
    Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic boundary problems for Dirac operators. Mathematics: Theory and Applications. Birkhäuser Boston Inc, Boston (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Bott, R., Seeley, R.: Some remarks on the paper of Callias: “Axial anomalies and index theorems on open spaces” [Comm. Math. Phys. 62 (1978), no. 3, 213–234]. Commun. Math. Phys. 62(3), 235–245 (1978)CrossRefGoogle Scholar
  10. 10.
    Braverman, M.: New proof of the cobordism invariance of the index. Proc. Am. Math. Soc. 130(4), 1095–1101 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Braverman, M. Cecchini, S.: Callias-type operators in von Neumann algebras. J. Geom. Anal. 1–41 (2017). doi: 10.1007/s12220-017-9832-1
  12. 12.
    Braverman, M., Shi, P.: Cobordism invariance of the index of Callias-type operators. Commun. Partial Differ. Equ. 41(8), 1183–1203 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Braverman, M. Shi, P.: The Atiyah-Patodi-Singer index on manifolds with non-compact boundary. arXiv:1706.06737 [math.DG] (2017)
  14. 14.
    Braverman, M. Shi,P.: APS index theorem for even-dimensional manifolds with non-compact boundary. arXiv:1708.08336 [math.DG] (2017)
  15. 15.
    Bruning, J., Moscovici, H.: \(L^2\)-index for certain Dirac-Schrödinger operators. Duke Math. J. 66(2), 311–336 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bunke, U.: A \(K\)-theoretic relative index theorem and Callias-type Dirac operators. Math. Ann. 303(2), 241–279 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Callias, C.: Axial anomalies and index theorems on open spaces. Commun. Math. Phys. 62(3), 213–234 (1978)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Carvalho, C., Nistor, V.: An index formula for perturbed Dirac operators on Lie manifolds. J. Geom. Anal. 24(4), 1808–1843 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gilkey, P.B.: The eta invariant for even-dimensional \({\rm PIN}_{\rm c}\) manifolds. Adv. Math. 58(3), 243–284 (1985)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58, 83–196 (1983)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Grosse, N., Nakad, R.: Boundary value problems for noncompact boundaries of spin\(^{{\rm c}}\) manifolds and spectral estimates. Proc. Lond. Math. Soc. (3) 109(4), 946–974 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kottke, C.: An index theorem of Callias type for pseudodifferential operators. J. K Theory 8(3), 387–417 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kottke, C.: A Callias-type index theorem with degenerate potentials. Commun. Partial Differ. Equ. 40(2), 219–264 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton, NJ (1989)MATHGoogle Scholar
  26. 26.
    Palais, R.S.: Seminar on the Atiyah-Singer index theorem. In: Atiyah, M.F., Borel, A., Floyd, E.E., Seeley, R.T., Shih, W., Solovay, R. (eds.) Annals of Mathematics Studies, vol. 57. Princeton University Press, Princeton (1965)Google Scholar
  27. 27.
    Råde, J.: Callias’ index theorem, elliptic boundary conditions, and cutting and gluing. Commun. Math. Phys. 161(1), 51–61 (1994)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wimmer, R.: An index for confined monopoles. Commun. Math. Phys. 327(1), 117–149 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations