Annals of Global Analysis and Geometry

, Volume 53, Issue 1, pp 11–37 | Cite as

Mean curvature flow of area decreasing maps between Riemann surfaces

  • Andreas Savas-HalilajEmail author
  • Knut Smoczyk


In this article, we give a complete description of the evolution of an area decreasing map \(f{: }M\rightarrow N\), induced by the mean curvature of their graph, in the situation where M and N are complete Riemann surfaces with bounded geometry, M being compact, for which their sectional curvatures \(\sigma _M\) and \(\sigma _N\) satisfy \(\min \sigma _M\ge \sup \sigma _N\).


Mean curvature flow Area decreasing maps Graphical surfaces Riemann surfaces 

Mathematics Subject Classification

53C44 53C42 57R52 35K55 



This work was initiated during the research visit of both authors at the Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig in August 2014. The authors would like to express their gratitude to Jürgen Jost and the Institute for the excellent research conditions and the hospitality.


  1. 1.
    Andrews, B., Hopper, C.: The Ricci Flow in Riemannian Geometry, A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem, Lecture Notes in Mathematics, vol. 2011. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  2. 2.
    An-Min, L., Jimin, L.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. (Basel) 58(6), 582–594 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aiyama, R.: Lagrangian surfaces with circle symmetry in the complex two-space. Mich. Math. J. 52(3), 491–506 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baird, P., Wood, J.: Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, vol. 29. The Clarendon Press, Oxford University Press, Oxford (2003)Google Scholar
  5. 5.
    Breuning, P.: Immersions with bounded second fundamental form. J. Geom. Anal. 25(2), 1344–1386 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheeger, J., Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York (1975). North-Holland Mathematical Library, vol. 9Google Scholar
  8. 8.
    Chen, B.-Y., Morvan, J.-M.: Géométrie des surfaces lagrangiennes de \({ C}^2\). J. Math. Pures Appl. (9) 66(3), 321–325 (1987)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chen, B.-L., Yin, L.: Uniqueness and pseudolocality theorems of the mean curvature flow. Commun. Anal. Geom. 15(3), 435–490 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, J., He, W.: A note on singular time of mean curvature flow. Math. Z. 266(4), 921–931 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, J., Li, J.: Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math. 156(1), 25–51 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, J., Li, J.: Mean curvature flow of surface in \(4\)-manifolds. Adv. Math. 163(2), 287–309 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, J., Tian, G.: Moving symplectic curves in Kähler–Einstein surfaces. Acta Math. Sin. (Engl. Ser.) 16(4), 541–548 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chern, S.-S., Wolfson, J.G.: Minimal surfaces by moving frames. Am. J. Math. 105(1), 59–83 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Geometric aspects. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI (2007)Google Scholar
  16. 16.
    Cooper, A.A.: Mean curvature flow in higher codimension, ProQuest LLC, Ann Arbor, MI (2011). Thesis (Ph.D.)–Michigan State UniversityGoogle Scholar
  17. 17.
    Hamilton, R.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117(3), 545–572 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Han, X., Li, J.: The mean curvature flow approach to the symplectic isotopy problem. Int. Math. Res. Not. 26, 1611–1620 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Han, X., Li, J., Yang, L.: Symplectic mean curvature flow in \({\mathbf{CP}}^2\). Calc. Var. Partial Differ. Equ. 48(1–2), 111–129 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hartman, P.: On homotopic harmonic maps. Canad. J. Math. 19, 673–687 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hasanis, Th, Savas-Halilaj, A., Vlachos, Th: On the Jacobian of minimal graphs in \({\mathbb{R}}^4\). Bull. Lond. Math. Soc. 43(2), 321–327 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hasanis, Th, Savas-Halilaj, A., Vlachos, Th: Minimal graphs in \({\mathbb{R}}^4\) with bounded Jacobians. Proc. Am. Math. Soc. 137(10), 3463–3471 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lee, K.-W., Lee, Y.-I.: Mean curvature flow of the graphs of maps between compact manifolds. Trans. Am. Math. Soc. 363(11), 5745–5759 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, J., Yang, L.: Symplectic mean curvature flows in Kähler surfaces with positive holomorphic sectional curvatures. Geom. Dedicata 170, 63–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lubbe, F.: Curvature estimates for graphical mean curvature flow in higher codimension. Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), Hannover (2015)Google Scholar
  26. 26.
    Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture, Clay Mathematics Monographs, 3, American Mathematical Society, Providence. RI; Clay Mathematics Institute, Cambridge (2007)Google Scholar
  27. 27.
    Osserman, R.: Global properties of minimal surfaces in \(E^{3}\) and \(E^{n}\). Ann. Math. (2) 80, 340–364 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)Google Scholar
  29. 29.
    Savas-Halilaj, A., Smoczyk, K.: Evolution of contractions by mean curvature flow. Math. Ann. 361(3–4), 725–740 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Savas-Halilaj, A., Smoczyk, K.: Homotopy of area decreasing maps by mean curvature flow. Adv. Math. 255, 455–473 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Savas-Halilaj, A., Smoczyk, K.: Bernstein theorems for length and area decreasing minimal maps. Calc. Var. Partial Differ. Equ. 50(3–4), 549–577 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schoen, R.: The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., 143. Dekker, New York, pp. 179–200 (1993)Google Scholar
  33. 33.
    Schoen, R., Yau, S.-T.: Compact group actions and the topology of manifolds with nonpositive curvature. Topology 18, 361–380 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118(3), 525–571 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Smoczyk, K., Tsui, M.-P., Wang, M.-T.: Curvature decay estimates of graphical mean curvature flow in higher codimensions. Trans. Am. Math. Soc. 368, 7763–7775 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Smoczyk, K.: Mean curvature flow in higher codimension-Introduction and survey. Glob. Differ. Geom. 12(2), 231–274 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Smoczyk, K.: Angle theorems for the Lagrangian mean curvature flow. Math. Z. 240(4), 849–883 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Smoczyk, K.: Nonexistence of minimal Lagrangian spheres in hyperKähler manifolds. Calc. Var. Partial Differ. Equ. 10, 41–48 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Smoczyk, K.: A canonical way to deform a Lagrangian submanifold, arXiv: dg-ga/9605005, pp. 1–16 (1996)
  40. 40.
    Wang, M.-T.: Deforming area preserving diffeomorphism of surfaces by mean curvature flow. Math. Res. Lett. 8(5–6), 651–661 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wang, M.-T.: Mean curvature flow of surfaces in Einstein four-manifolds. J. Differ. Geom. 57(2), 301–338 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institut für DifferentialgeometrieLeibniz Universität HannoverHannoverGermany
  2. 2.Institut für Differentialgeometrie, Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations