Abstract
It is well known that the curvature tensor of a pseudo-Riemannian manifold can be decomposed with respect to the pseudo-orthogonal group into the sum of the Weyl conformal curvature tensor, the traceless part of the Ricci tensor and of the scalar curvature. A similar decomposition with respect to the pseudo-unitary group exists on a pseudo-Kählerian manifold; instead of the Weyl tensor one obtains the Bochner tensor. In the present paper, the known decomposition with respect to the pseudo-orthogonal group of the covariant derivative of the curvature tensor of a pseudo-Riemannian manifold is refined. A decomposition with respect to the pseudo-unitary group of the covariant derivative of the curvature tensor for pseudo-Kählerian manifolds is obtained. This defines natural classes of spaces generalizing locally symmetric spaces and Einstein spaces. It is shown that the values of the covariant derivative of the curvature tensor for a non-locally symmetric pseudo-Riemannian manifold with an irreducible connected holonomy group different from the pseudo-orthogonal and pseudo-unitary groups belong to an irreducible module of the holonomy group.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Alekseevsky, D.V.: Riemannian manifolds with exeptional holonomy groups. Func. Anal. Appl. 2(2), 97–105 (1968)
Alekseevsky, D.V., Galaev, A.S.: Two-symmetric Lorentzian manifolds. J. Geom. Phys. 61(12), 2331–2340 (2011)
Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Hamiltonian 2-forms in Kahler geometry. I. General theory. J. Differ. Geom. 73(3), 359–412 (2006)
Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)
Bryant, R.L.: Bochner-Kähler metrics. J. Am. Math. Soc. 14(3), 623–715 (2001)
Bryant, R.: Classical, exceptional and exotic holonomies: a status report, Actes de la Table Ronde de Géométrie Différentielle en l’Honneur de Marcel Berger. Collection SMF Séminaires and congrès 1 (Soc. math. de France), pp. 93–166 (1996)
Derdzinski, A., Roter, W.: On conformally symmetric manifolds with metrics of indices \(0\) and \(1\). Tensor (N.S.) 31(3), 255–259 (1977)
Derdzinski, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin 16(1), 117–128 (2009)
Díaz-Ramos, J., Fiedler, B., García-Río, E., Gilkey, P.: The structure of algebraic covariant derivative curvature tensors. Int. J. Geom. Methods Mod. Phys. 1(6), 711–720 (2004)
Eisenhart, L.P.: Riemannian Geometry, Eighth printing. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ, pp. x+306 (1997)
Galaev, A.S.: One component of the curvature tensor of a Lorentzian manifold. J. Geom. Phys 60, 962–971 (2010)
Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259–280 (1978)
Gray, A., Vanhecke, L.: Decomposition of the space of covariant derivatives of curvature operators (Preprint)
Kim, J.: On Kähler manifolds with harmonic Bochner curvature tensor. Ann. Global Anal. Geom. 35(4), 339–343 (2009)
Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76(3), 423–484 (2007)
Matsumoto, M.: On Kählerian spaces with parallel or vanishing Bochner curvature tensor. Tensor (N.S.) 20, 25–28 (1969)
Matsumoto, M., Tanno, S.: Kählerian spaces with parallel or vanishing Bochner curvature tensor. Tensor (N.S.) 27, 291–294 (1973)
Omachi, E.: Orthogonal decompositions of \(\nabla R\), \(\nabla {\rm Ric}\) and \({}^C\nabla R\) in Riemannian and Kaehlerian manifolds. Tensor (N.S.) 50(3), 213–218 (1991)
Omachi, E.: On Bianchi type identity for Bochner curvature tensor. Tensor (N.S.) 64(2), 144–148 (2003)
Strichartz, R.S.: Linear algebra of curvature tensors and their covariant derivatives. Can. J. Math. 40(5), 1105–1143 (1988)
Tachibana, S.: On the Bochner curvature tensor. Nat. Sci. Rep. Ochanomizu Univ. 18, 15–19 (1967)
Tricerri, F., Vanhecke, L.: Curvature tensors on almost Hermitian manifolds. Trans. Am. Math. Soc. 267(2), 365–397 (1981)
Vinberg, E.B., Onishchik, A.L.: Lie Groups and Algebraic Groups. Springer, Berlin, pp. xx+328 (1990)
Acknowledgments
The author is grateful to Dmitri V. Alekseevsky and Rod Gover for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
The author acknowledges the institutional support of University of Hradec Králové and the grant GA14–02476S of the Czech Science Foundation.
Rights and permissions
About this article
Cite this article
Galaev, A.S. Covariant derivative of the curvature tensor of pseudo-Kählerian manifolds. Ann Glob Anal Geom 51, 245–265 (2017). https://doi.org/10.1007/s10455-016-9533-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10455-016-9533-1
Keywords
- Pseudo-Riemannian manifold
- Pseudo-Kählerian manifold
- Curvature tensor
- Covariant derivative of the curvature tensor
- Second Bianchi identity