Skip to main content
Log in

The bienergy of unit vector fields

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The bienergy of a unit vector field on a Riemannian manifold \((M, g)\) is defined to be the bienergy of the corresponding map \((M, g)\mapsto (T_{1}M, g_{\mathrm{S}})\), where the unit tangent sphere bundle \(T_{1}M\) is equipped with the restriction of the Sasaki metric \(g_{\mathrm{S}}\). The constrained variational problem is studied, where variations are confined to unit vector fields, and the corresponding critical point condition characterizes biharmonic unit vector fields. Finally, we completely determine invariant biharmonic unit vector fields in three-dimensional unimodular Lie groups and the generalized Heisenberg groups \(H(1, r), r\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. In: Lond. Math. Soc. Monogr., vol. 29. Oxford University Press, Oxford (2003)

  2. Balmus, A., Montaldo, S., Oniciuc, C.: Classification results for biharmonic submanifolds in spheres. Isr. J. Math 168, 201–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balmus, A., Montaldo, S., Oniciuc, C.: New results toward the classification of biharmonic submanifolds in \({\mathbb{S}}^{n}\). An. St. Univ. Ovidius Constanta 20, 89–114 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Balmus, A., Montaldo, S., Oniciuc, C.: Biharmonic PNMC submanifolds in spheres. Ark. Mat. 51, 197–221 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boeckx, E., Vanhecke, L.: Characteristic reflections on unit tangent sphere bundles. Houst. J. Math. 23, 427–448 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \({\mathbb{S}}^{3}\). Int. J. Math. 12, 867–876 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Isr. J. Math. 130, 109–123 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Amsterdam (2011)

  9. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eells, J., Lemaire, L.: Selected topics in harmonic maps. In: CBMS Regional Conference Series in Mathematics, vol. 50. Am. Math. Soc., Providence (1983)

  11. Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \(\mathbb{C}P^{n}\). Math. Z. 266, 505–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gil-Medrano, O.: Relationship between volume and energy of unit vector fields. Differ. Geom. Appl. 15, 137–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. González-Dávila, J.C., Vanhecke, L.: Invariant harmonic unit vector fields on Lie groups. Boll. U.M.I. (8) 5(B), 377–403 (2002)

    MATH  Google Scholar 

  14. Gudmundsson, S., Kappos, E.: On the geometry of tangent bundles. Expo. Math. 20, 1–41 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Han, S.D., Yim, J.W.: Unit vector fields on spheres which are harmonic maps. Math. Z. 227, 83–92 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higuchi, A., Kay, B.S., Wood, C.M.: The energy of unit vector fields on the 3-sphere. J. Geom. Phys. 37(1–2), 137–155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13, 23–27 (1979)

    MATH  MathSciNet  Google Scholar 

  18. Jiang, G.: 2-Harmonic maps and their first and second variational formulas. Translated into English by Hajime Urakawa. Note Mat. 28(suppl. n. 1), 209–232 (2008)

    Google Scholar 

  19. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)

    Article  MATH  Google Scholar 

  20. Markellos, M., Urakawa, H.: The biharmonicity of sections of the tangent bundle, arXiv:1407.1127v2

  21. Milnor, J.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argent. 47(2), 1–22 (2006)

    MATH  MathSciNet  Google Scholar 

  23. Nouhaud, O.: Applications harmoniques d’ une variété Riemannienne dans son fibré tangent. C. R. Acad. Sci. Paris 284, 815–818 (1977)

    MATH  MathSciNet  Google Scholar 

  24. O’ Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983)

  25. Urakawa, H.: Calculus of variations and harmonic maps. In: Transl. Math. Monogr., vol. 132. Am. Math. Soc., Providence (1993)

  26. Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303, 325–344 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wood, C.M.: On the energy of a unit vector field. Geom. Dedicata 64, 319–330 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the referee and Eric Loubeau for several useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Markellos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markellos, M., Urakawa, H. The bienergy of unit vector fields. Ann Glob Anal Geom 46, 431–457 (2014). https://doi.org/10.1007/s10455-014-9432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9432-2

Keywords

Mathematics Subject Classification

Navigation