Skip to main content
Log in

Different approaches to the complex of three Dirac operators

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

An attempt to study the compatibility conditions, and the general free resolution, for the system associated with the Dirac operator in \(k\) vector variables appeared already in Sabadini et al. (Math Z 239: 293–320, 2002), from the point of view of Clifford analysis, and in Sabadini et al. (Exp Math 12: 351–364, 2003) using the tool of megaforms. Other studies have been carried out in other papers, like Krump (Adv Appl Clifford Alg 19: 365–374, 2009), Krump and Souček (17: 537–548, 2007), Salač (The generalized Dolbeault complexes in Clifford analysis, Praha 2012), using methods of representation theory. In this paper, we restrict our attention to the case of three variables and we describe the free resolution associate to the module from various different angles. The comparison has several noteworthy consequences. In particular, it gives the explicit description of all the maps contained in the algebraic resolution and shows that they are invariant with respect to the action of \(SL(3)\times SO(m)\). We also discuss how the methods used in this paper can be generalized to the case of \(k>3\) Dirac operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.W., Loustaunau, P.: Analysis of the module determining the properties of regular functions of several quaternionic variables. Pac. J. Math 196(1), 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, W.W., Berenstein, C.A., Loustaunau, P., Sabadini, I., Struppa, D.C.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex. J. Geom. Anal. 9(1), 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baston, R.: Quaternionic complexes. J. Geom. Phys. 8, 29–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baston, R., Eastwood, M.: The Penrose Transform. Its interaction with representation theory. Oxford Univ. Press, Oxford (1989)

    MATH  Google Scholar 

  5. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Pitman Research Notes in Mathematics, vol. 76, (1982)

  6. Bureš, J., Damiano, A., Sabadini, I.: Explicit invariant resolutions for several Fueter operators. J. Geom. Phys. 57(3), 765–775 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. CoCoA Team, CoCoA, A software package for Computations in Commutative Algebra, freely available at: http://cocoa.dima.unige.it

  8. Čap, A., Slovák, J.: Parabolic Geometries I: Background an General Theory, AMS Math, Surveys and Monogrpahs, vol. 154, (2009)

  9. Colombo, F., Souček, V., Struppa, D.C.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56(7), 1175–1191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombo, F., Damiano, A., Sabadini, I., Struppa, D.C.: Quaternionic hyperfunctions on \(5\)-dimensional varieties in \({ H}^2\). J. Geom. Anal. 17(3), 459–478 (2007)

    Article  MathSciNet  Google Scholar 

  11. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  12. Damiano, A.: Computational Approach to Some Problems in Algebraic Analysis, Ph.D. Dissertation. George Mason University, USA (2005)

    Google Scholar 

  13. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions, Mathematics and Its Applications, vol. 53. Kluwer Academic Publishers, Netherlands (1992)

    Book  Google Scholar 

  14. Einsebud, D.: The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229. Springer Verlag, New York (2005)

    Google Scholar 

  15. Franek, P.: Several Dirac Operators in Parabolic Geometry, Ph.D. Dissertation. Charles University, Prague (2006)

    Google Scholar 

  16. Goodmann, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  17. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de

  18. Hartley, D., Tuckey, P.: Gröbner bases in Clifford and Grassmann algebras. J. Symbol. Comput. 20(2), 197–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Berlin (2000)

    Book  Google Scholar 

  20. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Berlin (2005)

    Google Scholar 

  21. Krump, L.: A resolution for the Dirac operator in four variables in dimension 6. Adv. Appl. Clifford Alg. 19, 365–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krump, L., Souček, V.: The generalized Dolbeault complex in two Clifford variables. Adv. Appl. Clifford Alg. 17, 537–548 (2007)

  23. Krump, L.: The generalised Dolbeault complex for four Dirac operators in the stable rank. In: Proceedings of the ICNAAM, Kos 2008, AIP Conference Proceedings 2008, pp. 670–673 (2008)

  24. Krump, L., Salač, T.: Exactness of the generalized Dolbeault complex for k Dirac operators in the stable rank. In: Numerical Analysis and Applied Mathematics ICNAAM 2012, Melville, pp. 300–303 (2012)

  25. Krump, L., Salač, T., Souček, V.: The resolution for \(k\) Dirac operators on a flag manifold, in preparation

  26. Levandovskyy, V.: Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Ph.D. Thesis (2005)

  27. Mora, T.: Gröbner Bases for Non-Commutative Polynomial Rings, vol. 229, pp. 353–362. L.N.C.S., Berlin (1986)

    Google Scholar 

  28. Palamodov, V.P.: Linear Differential Operators with Constant Coefficients. Springer Verlag, New York (1970)

    Book  MATH  Google Scholar 

  29. Procesi, C.: Lie Groups. An Approach Through Invariants and Representations. Springer-Verlag, Universitext, New York (2007)

    MATH  Google Scholar 

  30. Sabadini, I., Sommen, F., Struppa, D.C.: The Dirac complex on abstract vector variables: megaforms. Exp. Math. 12, 351–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sabadini, I., Shapiro, M., Struppa, D.C.: Algebraic analysis of the Moisil–Theodorescu system. Compl. Var. 40, 333–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sabadini, I., Sommen, F., Struppa, D.C., Van Lancker, P.: Complexes of Dirac operators in Clifford algebras. Math. Z. 239, 293–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Salač, T.: \(k\)-Dirac operator and parabolic geometries, preprint, arXiv:1201.0355v1

  34. Salač, T.: The Generalized Dolbeault Complexes in CLifford Analysis, PhD thesis, Praha (2012)

  35. Souček, V.: Invariant operators and Clifford analysis. Adv. Appl. Clifford Algebras 11, 37–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the grant P201/12/G028 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sabadini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damiano, A., Sabadini, I. & Souček, V. Different approaches to the complex of three Dirac operators. Ann Glob Anal Geom 46, 313–334 (2014). https://doi.org/10.1007/s10455-014-9425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9425-1

Keywords

Navigation