Annals of Global Analysis and Geometry

, Volume 46, Issue 2, pp 129–143 | Cite as

Generalized Killing spinors on spheres

Article

Abstract

We study generalized Killing spinors on round spheres \(\mathbb {S}^n\). We show that on the standard sphere \(\mathbb {S}^8\) any generalized Killing spinor has to be an ordinary Killing spinor. Moreover, we classify generalized Killing spinors on \(\mathbb {S}^n\) whose associated symmetric endomorphism has at most two eigenvalues and recover in particular Agricola–Friedrich’s canonical spinor on 3-Sasakian manifolds of dimension 7. Finally, we show that it is not possible to deform Killing spinors on standard spheres into genuine generalized Killing spinors.

Keywords

Generalized Killing spinors Parallel spinors 

Mathematics Subject Classification (2010)

Primary: 53C25 53C27 53C40 

References

  1. 1.
    Agricola, I., Friedrich, Th: 3-Sasakian manifolds in dimension seven, their spinors and \(G_{2}\)-structures. J. Geom. Phys. 60(2), 326–332 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Ammann, B., Moroianu, A., Moroianu, S.: The Cauchy problems for Einstein metrics and parallel spinors. Comm. Math. Phys. 320, 173–198 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bär, C.: Real Killing spinors and holonomy. Comm. Math. Phys. 154, 509–521 (1993)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-riemannian and spin geometry. Math. Z. 249, 545–580 (2005)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Baum, H., Friedrich, Th, Grunewald, R., Kath, I.: Twistor and Killing Spinors on Riemannian Manifolds. Teubner-Verlag, Stuttgart-Leipzig (1991)Google Scholar
  6. 6.
    Besse, A.: Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin (1987)Google Scholar
  7. 7.
    Bourguignon, J.-P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Inv. Math. 63, 263–286 (1981)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and \({\rm G}_{2}\) structures, differential geometry, Valencia, 2001, pp. 115–133. World Sci. Publ, River Edge, NJ (2002)Google Scholar
  9. 9.
    Conti, D., Salamon, S.: Reduced holonomy, hypersurfaces and extensions. Int. J. Geom. Meth. Mod. Phys. 3(5–6), 899–912 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Fernandez, M., Gray, A.: Riemannian manifolds with structure group \({\rm G}_2\). Ann. Mat. Pura Appl. 132(4), 19–45 (1982)Google Scholar
  11. 11.
    Friedrich, Th: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ginoux, N., Habib, G.: A spectral estimate for the Dirac operator on Riemannian flows. Cent. Eur. J. Math. 8(5), 950–965 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Friedrich, Th, Kim, E.C.: Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors. J. Geom. Phys. 37(1–2), 1–14 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hitchin, N.: Stable forms and special metrics, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math. Amer. Math. Soc. vol. 288, pp. 70–89, Providence, RI, (2001)Google Scholar
  15. 15.
    Lawson, B., Michelson, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)MATHGoogle Scholar
  16. 16.
    Madsen, T.B., Salamon, S.: Half-flat structures on \(S^3\times S^3\). Ann. Global Anal. Geom. 44(4), 369–390 (2013)Google Scholar
  17. 17.
    Morel, B.: The energy–momentum tensor as a second fundamental form, math.DG/0302205.Google Scholar
  18. 18.
    Moroianu, A., Semmelmann, U.: Generalized Killing spinors on Einstein manifolds, to appear in Internat. J. Math. arXiv:1303.6179
  19. 19.
    Schulte-Hengesbach, F.: Half-Flat Structures on Lie Groups, thesis, Universität Hamburg, (2010). http://www.math.uni-hamburg.de/home/schulte-hengesbach/diss
  20. 20.
    Wang, M.Y.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7, 59–68 (1989)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité de Versailles-St Quentin, UMR 8100 du CNRSVersaillesFrance
  2. 2.Fachbereich Mathematik, Institut für Geometrie und TopologieUniversität StuttgartStuttgartGermany

Personalised recommendations