Annals of Global Analysis and Geometry

, Volume 46, Issue 1, pp 1–22

On rigidity of hypersurfaces with constant curvature functions in warped product manifolds

Article

Abstract

In this paper, we first investigate several rigidity problems for hypersurfaces in the warped product manifolds with constant linear combinations of higher order mean curvatures as well as “weighted” mean curvatures, which extend the work (Brendle in Publ Math Inst Hautes Études Sci 117:247–269, 2013; Brendle and Eichmair in J Differ Geom 94(94):387–407, 2013; Montiel in Indiana Univ Math J 48:711–748, 1999) considering constant mean curvature functions. Secondly, we obtain the rigidity results for hypersurfaces in the space forms with constant linear combinations of intrinsic Gauss–Bonnet curvatures \(L_k\). To achieve this, we develop some new kind of Newton–Maclaurin type inequalities on \(L_k\) which may have independent interest.

Keywords

Constant mean curvature Rigidity Warped product manifold Gauss–Bonnet curvature 

Mathematics Subject Classification (2010)

Primary 53C24 Secondary 52A20 53C40 

References

  1. 1.
    Alás, L.J., Impera, D., Rigoli, M.: Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365, 591–621 (2013)CrossRefGoogle Scholar
  2. 2.
    Alexandrov, A.D.: Uniqueness theorems for surfaces in the large I-V. Vestn. Leningr. Univ. 11, 5–17 (1956); 12, 15–44 (1957); 13, 14–26 (1958); 13, 27–34 (1958); 13, 5–8 (1958). English transl. in Am. Math. Soc. Transl. 21, 341–354, 354–388, 389–403, 403–411, 412–416 (1962)Google Scholar
  3. 3.
    Aquino, C.P., de Lima, H.F.: On the unicity of complete hypersurfaces immersed in a semi- Riemannian warped product. J. Geom. Anal. (2012). doi:10.1007/s12220-012-9366-5
  4. 4.
    Alías, L.J., de Lira, J.H.S., Malacarne, J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5(4), 527–562 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Brendle, S., Eichmair, M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differ. Geom. 94(94), 387–407 (2013)MATHMathSciNetGoogle Scholar
  7. 7.
    Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14(5), 1135–1168 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)MATHMathSciNetGoogle Scholar
  9. 9.
    Ge, Y., Wang, G., Wu, J.: A new mass for asymptotically flat manifolds. arXiv:1211.3645Google Scholar
  10. 10.
    Ge, Y., Wang, G., Wu, J.: The Gauss–Bonnet–Chern mass of conformally flat manifolds. IMRN. arXiv:1212.3213 (to appear)Google Scholar
  11. 11.
    Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities II. arXiv:1304.1417Google Scholar
  12. 12.
    Ge, Y., Wang, G., Wu, J.: The GBC mass for asymptotically hyperbolic manifolds. arXiv:1306.4233Google Scholar
  13. 13.
    Guan, P.: Topics in Geometric Fully Nonlinear Equations. Lecture Notes. http://www.math.mcgill.ca/guan/notes.html
  14. 14.
    He, Y., Li, H., Ma, H., Ge, J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58(2), 853–868 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hijazi, O., Montiel, S., Zhang, X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8, 195–208 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hsiang, W.-Y., Teng, Z.-H., Yu, W.-C.: New examples of constant mean curvature immersions of (2k-1)-spheres into Euclidean 2k-space. Ann. Math. (2) 117(3), 609–625 (1983)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hsiung, C.C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1954)MATHMathSciNetGoogle Scholar
  18. 18.
    Koh, S.E.: Sphere theorem by means of the ratio of mean curvature functions. Glasg. Math. J. 42, 91–95 (2000)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Korevaar, N.J.: Sphere theorems via Alexsandrov for constant Weingarten curvature hypersurfaces—appendix to a note of A. Ros. J. Differ. Geom. 27, 221–223 (1988)MATHMathSciNetGoogle Scholar
  20. 20.
    Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. (2) 39(4), 842–850 (1938)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Liebmann, H.: Eine neue Eigenschaft der Kugel. Nachr. Akad. Wiss. Göttingen. 1899, 44–55 (1899)Google Scholar
  22. 22.
    Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48, 711–748 (1999)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Montiel, S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314(3), 529–553 (1999)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Montiel, S., Ros, A.: Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures. In: Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 52 (in honor of M.P. do Carmo; edited by B. Lawson and K. Tenenblat), pp. 279–296 (1991)Google Scholar
  25. 25.
    Reilly, R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459–472 (1977)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ros, A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differ. Geom. 27, 215–220 (1988)MATHMathSciNetGoogle Scholar
  27. 27.
    Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Revista Mathmática Iberoamericana 3, 447–453 (1987)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Süss, W.: Über Kennzeichnungen der Kugeln und Affinsphären durch Herrn K.-P. Grotemeyer. Arch. Math. (Basel) 3, 311–313 (1952)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121(1), 193–243 (1986)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Wu, J.: A new characterization of geodesic spheres in the hyperbolic space. Proc. Am. Math. Soc. arXiv:1305.2805 (to appear)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Mathematisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Max-Planck-Institut für Mathematik in den NaturwissenschaftLeipzigGermany

Personalised recommendations