Annals of Global Analysis and Geometry

, Volume 45, Issue 1, pp 47–65 | Cite as

Complete self-shrinkers confined into some regions of the space



We study geometric properties of complete non-compact bounded self-shrinkers and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane through the origin. When such an intersection is compact, we deduce spectral information on the natural drifted Laplacian associated to the self-shrinker. These results go in the direction of verifying the validity of a conjecture by H.D. Cao concerning the polynomial volume growth of complete self-shrinkers. A finite strong maximum principle in case the self-shrinker is confined into a cylindrical product is also presented.


Bounded self-shrinkers Hyperplane intersection Weighted manifolds Drifted Laplacian 

Mathematics Subject Classification (1991)




The authors would like to thank Pacelli Bessa, Debora Impera and Giona Veronelli for their interest in this work and for several suggestions that have improved the presentation of the paper. Further suggestions concerning the presentation are due to the anonymous referee.


  1. 1.
    Anderson, M.: The compactification of a minimal submanifold by its Gauss map. Preprint.
  2. 2.
    Barta, J.: Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)MATHGoogle Scholar
  3. 3.
    Bessa, G.P., Jorge, L., Montenegro, F.: Complete submanifolds of \({\mathbb{R}}^n\) with finite topology. Comm. Anal. Geom. 15, 725–732 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bessa, G.P., Pigola, S., Setti, A.G.: Spectral and stochastic properties of the \(f\)-Laplacian, solutions of PDE’s at infinity and geometric applications. Rev. Mat. Iberoam. 29, 579–610 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Carron, G.: Une suite exacte en \(L^2\)-cohomologie. Duke Math. J. 95, 343–372 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. Partial Differ. Equ. 46(3–4), 878–889 (2013)MathSciNetGoogle Scholar
  7. 7.
    Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press Inc., Orlando (1984)Google Scholar
  8. 8.
    Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Colding, T., Minicozzi, W.: Generic mean curvature flow I; generic singularities. Ann. Math. 175, 755–833 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Preprint.
  11. 11.
    Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (NS) 36, 135–249 (1999)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)MATHMathSciNetGoogle Scholar
  13. 13.
    Lawson Jr, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)CrossRefMATHGoogle Scholar
  14. 14.
    Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)Google Scholar
  15. 15.
    Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of \({\mathbb{R}}^{n}\). Commun. Pure Appl. Math 26, 361–379 (1973)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Pigola, S., Veronelli, G.: Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications. Differ. Geom. Appl. 29, 35–54 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)Google Scholar
  18. 18.
    Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 757–799 (2011)Google Scholar
  20. 20.
    Pigola, S., Setti, A.G.: The Feller property of Riemannian manifolds. J. Funct. Anal. 262, 2481–2515 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Rimoldi, M.: A classification theorem for self-shrinkers. Proc. Am. Math. Soc. (to appear)Google Scholar
  22. 22.
    Sjögren, P.: Ornstein–Uhlenbeck theory in finite dimension. Lecture Notes, University of Gothenburg.
  23. 23.
    Sormani, C.: On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature. Indiana Univ. Math. J. 50, 1867–1883 (2001)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)MATHMathSciNetGoogle Scholar
  25. 25.
    Yang, N.: A note on nonnegative Bakry–Émery Ricci curvature. Arch. Math. (Basel) 93, 491–496 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell’InsubriaComoItaly

Personalised recommendations