Skip to main content
Log in

Geodesic Ricci solitons on unit tangent sphere bundles

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In the paper, (Abbassi and Kowalski, Ann Glob Anal Geom, 38: 11–20, 2010) the authors study Einstein Riemannian \(g\) natural metrics on unit tangent sphere bundles. In this study, we equip the unit tangent sphere bundle \(T_1 M\) of a Riemannian manifold \((M,g)\) with an arbitrary Riemannian \(g\) natural metric \(\tilde{G}\) and we show that if the geodesic flow \(\tilde{\xi }\) is the potential vector field of a Ricci soliton\((\tilde{G},\tilde{\xi },\lambda )\) on \(T_1M,\) then \((T_1M,\tilde{G})\) is Einstein. Moreover, we show that the Reeb vector field of a contact metric manifold is an infinitesimal harmonic transformation if and only if it is Killing. Thus, we consider a natural contact metric structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })\) over \(T_1 M\) and we show that the geodesic flow \(\tilde{\xi }\) is an infinitesimal harmonic transformation if and only if the structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi },\tilde{\xi })\) is Sasaki \(\eta \)-Einstein. Consequently, we get that \((\tilde{G},\tilde{\xi }, \lambda )\) is a Ricci soliton if and only if the structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })\) is Sasaki-Einstein with \(\lambda = 2(n-1) >0.\) This last result gives new examples of Sasaki–Einstein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbassi, K.M.T.: \(g\)-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note Mat 28(1), 6–35 (2008)

    MathSciNet  Google Scholar 

  2. Abbassi, K.M.T., Kowalski, O.: On Einstein Riemannian \(g\)-natural metrics on unit tangent sphere bundles. Ann. Glob. Anal. Geom. 38, 11–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbassi, K.M.T., Sarih, M.: On some hereditary properties of Riemannian \(g\)-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 22(1), 19–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abbassi, K.M.T., Calvaruso, G.: \(g\)-natural contact metrics on unit tangent sphere bundles. Monatsh. Math. 151, 189–209 (2006)

    MathSciNet  Google Scholar 

  5. Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonicity of unit vector fields with respect to Riemannian natural metrics. Differ. Geom. Appl. 27, 157–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonic maps defined by the geodesic flow. Houston J. Math. 36(1), 69–90 (2010)

    Google Scholar 

  7. Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian \(g\)-natural metrics. Quart. J. Math. 62, 259–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benyounes, M., Loubeau, E., Todjihounde, L.: Harmonic maps and Kaluza–Klein metrics on Spheres. Rocky Mountain. J. Math. 42, 791–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds Progress in Mathematics, vol. 203, 2nd edn. Birkhäuser, Boston (2010)

  10. Boyer, C., Galicki, K.: Sasakian Geometry: Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    Google Scholar 

  11. Cao, H.D.: Geometry of Ricci solitons. Chinese Ann. Math. Ser. B 27B, 121–142 (2006)

    Article  Google Scholar 

  12. Calvaruso, G., Perrone, D.: Homogeneous and H-contact unit tangent sphere bundles. J. Aust. Math. Soc. 88, 323–337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calvio-Louzao, E., Seoane-Bascoy, J., Vzquez-Abal, M.E., Vzquez-Lorenzo, R.: One-harmonic invariant vector fields on three-dimensional Lie groups. J. Geom. Phys. 62, 1532–1547 (2012)

    Article  MathSciNet  Google Scholar 

  14. Cho, J.T.: Notes on contact Ricci solitons. Proc. Edinb. Math. Soc. 54, 47–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chow, B., Knopf, D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence (2004)

    Google Scholar 

  16. Crasmareanu, M.: Liouville and Ricci solitons. C. R. Acad. Sc. Paris Ser. I. 347, 1305–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Science Ltd., (2011)

  18. Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Hermann, R.: Yang–Mills, Kaluza–Klein, and the Einstein Program: Interdisciplinary Math., vol. XIX. Math Sci Press, Brookline (1978)

  20. Kowalski, O., Sekizawa, M.: Natural Transformations of Riemannian Metrics on Manifolds to Metrics on Tangent Bundles: A Classification. Bull. Tokyo Gakugei Univ. IV 40, 1–29 (1988)

    Google Scholar 

  21. Nouhaud, O.: Transformations infinitesimales harmoniques. C. R. Acad. Sci. Paris Ser. A. 274, 573–576 (1972)

    MathSciNet  MATH  Google Scholar 

  22. Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20, 367–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perrone, D.: Minimality, harmonicity and CR geometry for Reeb vector fields. Int. J. Math. 21(9), 1189–1218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24, 291–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stepanov, S.E., Shelepova, V.N.: A note on Ricci solitons. Math. Notes 86(3), 447–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szab\(\acute{o}\), Z.I.: A short topological proof for the symmetry of 2 point homogeneous spaces. Invent. Math. 106, 61–64 (1991)

    Google Scholar 

  27. Wang, H.C.: Two point homogeneous spaces. Ann. of Math. 55, 177–191 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wood, C.M.: An existence theorem for harmonic sections. Manuscripta Math. 68, 69–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by Universitá del Salento and M.I.U.R. (within P.R.I.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Perrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrone, D. Geodesic Ricci solitons on unit tangent sphere bundles. Ann Glob Anal Geom 44, 91–103 (2013). https://doi.org/10.1007/s10455-012-9357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-012-9357-6

Keywords

Mathematics Subject Classification (2000)

Navigation