Annals of Global Analysis and Geometry

, Volume 44, Issue 2, pp 91–103 | Cite as

Geodesic Ricci solitons on unit tangent sphere bundles



In the paper, (Abbassi and Kowalski, Ann Glob Anal Geom, 38: 11–20, 2010) the authors study Einstein Riemannian \(g\) natural metrics on unit tangent sphere bundles. In this study, we equip the unit tangent sphere bundle \(T_1 M\) of a Riemannian manifold \((M,g)\) with an arbitrary Riemannian \(g\) natural metric \(\tilde{G}\) and we show that if the geodesic flow \(\tilde{\xi }\) is the potential vector field of a Ricci soliton\((\tilde{G},\tilde{\xi },\lambda )\) on \(T_1M,\) then \((T_1M,\tilde{G})\) is Einstein. Moreover, we show that the Reeb vector field of a contact metric manifold is an infinitesimal harmonic transformation if and only if it is Killing. Thus, we consider a natural contact metric structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })\) over \(T_1 M\) and we show that the geodesic flow \(\tilde{\xi }\) is an infinitesimal harmonic transformation if and only if the structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi },\tilde{\xi })\) is Sasaki \(\eta \)-Einstein. Consequently, we get that \((\tilde{G},\tilde{\xi }, \lambda )\) is a Ricci soliton if and only if the structure \((\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })\) is Sasaki-Einstein with \(\lambda = 2(n-1) >0.\) This last result gives new examples of Sasaki–Einstein structures.


Tangent sphere bundles Riemannian \(g\) natural metrics Sasaki–Einstein metrics Geodesic flow Infinitesimal harmonic transformation Ricci solitons 

Mathematics Subject Classification (2000)

53C25 53D25 


  1. 1.
    Abbassi, K.M.T.: \(g\)-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note Mat 28(1), 6–35 (2008)MathSciNetGoogle Scholar
  2. 2.
    Abbassi, K.M.T., Kowalski, O.: On Einstein Riemannian \(g\)-natural metrics on unit tangent sphere bundles. Ann. Glob. Anal. Geom. 38, 11–20 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Abbassi, K.M.T., Sarih, M.: On some hereditary properties of Riemannian \(g\)-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 22(1), 19–47 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Abbassi, K.M.T., Calvaruso, G.: \(g\)-natural contact metrics on unit tangent sphere bundles. Monatsh. Math. 151, 189–209 (2006)MathSciNetGoogle Scholar
  5. 5.
    Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonicity of unit vector fields with respect to Riemannian natural metrics. Differ. Geom. Appl. 27, 157–169 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonic maps defined by the geodesic flow. Houston J. Math. 36(1), 69–90 (2010)Google Scholar
  7. 7.
    Abbassi, K.M.T., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian \(g\)-natural metrics. Quart. J. Math. 62, 259–288 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Benyounes, M., Loubeau, E., Todjihounde, L.: Harmonic maps and Kaluza–Klein metrics on Spheres. Rocky Mountain. J. Math. 42, 791–821 (2012)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds Progress in Mathematics, vol. 203, 2nd edn. Birkhäuser, Boston (2010)Google Scholar
  10. 10.
    Boyer, C., Galicki, K.: Sasakian Geometry: Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)Google Scholar
  11. 11.
    Cao, H.D.: Geometry of Ricci solitons. Chinese Ann. Math. Ser. B 27B, 121–142 (2006)CrossRefGoogle Scholar
  12. 12.
    Calvaruso, G., Perrone, D.: Homogeneous and H-contact unit tangent sphere bundles. J. Aust. Math. Soc. 88, 323–337 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Calvio-Louzao, E., Seoane-Bascoy, J., Vzquez-Abal, M.E., Vzquez-Lorenzo, R.: One-harmonic invariant vector fields on three-dimensional Lie groups. J. Geom. Phys. 62, 1532–1547 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cho, J.T.: Notes on contact Ricci solitons. Proc. Edinb. Math. Soc. 54, 47–53 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chow, B., Knopf, D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence (2004)Google Scholar
  16. 16.
    Crasmareanu, M.: Liouville and Ricci solitons. C. R. Acad. Sc. Paris Ser. I. 347, 1305–1308 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Science Ltd., (2011)Google Scholar
  18. 18.
    Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer, Berlin (1993)MATHGoogle Scholar
  19. 19.
    Hermann, R.: Yang–Mills, Kaluza–Klein, and the Einstein Program: Interdisciplinary Math., vol. XIX. Math Sci Press, Brookline (1978)Google Scholar
  20. 20.
    Kowalski, O., Sekizawa, M.: Natural Transformations of Riemannian Metrics on Manifolds to Metrics on Tangent Bundles: A Classification. Bull. Tokyo Gakugei Univ. IV 40, 1–29 (1988)Google Scholar
  21. 21.
    Nouhaud, O.: Transformations infinitesimales harmoniques. C. R. Acad. Sci. Paris Ser. A. 274, 573–576 (1972)MathSciNetMATHGoogle Scholar
  22. 22.
    Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20, 367–378 (2004)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Perrone, D.: Minimality, harmonicity and CR geometry for Reeb vector fields. Int. J. Math. 21(9), 1189–1218 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24, 291–299 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Stepanov, S.E., Shelepova, V.N.: A note on Ricci solitons. Math. Notes 86(3), 447–450 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Szab\(\acute{o}\), Z.I.: A short topological proof for the symmetry of 2 point homogeneous spaces. Invent. Math. 106, 61–64 (1991)Google Scholar
  27. 27.
    Wang, H.C.: Two point homogeneous spaces. Ann. of Math. 55, 177–191 (1952)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wood, C.M.: An existence theorem for harmonic sections. Manuscripta Math. 68, 69–75 (1990)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Universitá del Salento LecceItaly

Personalised recommendations