Skip to main content
Log in

Geometry of D’Atri spaces of type k

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A Riemannian n-dimensional manifold M is a D’Atri space of type k (or k-D’Atri space), 1 ≤ k ≤ n − 1, if the geodesic symmetries preserve the k-th elementary symmetric functions of the eigenvalues of the shape operators of all small geodesic spheres in M. Symmetric spaces are k-D’Atri spaces for all possible k ≥ 1 and the property 1-D’Atri is the D’Atri condition in the usual sense. In this article we study some aspects of the geometry of k-D’Atri spaces, in particular those related to properties of Jacobi operators along geodesics. We show that k-D’Atri spaces for all k = 1, . . ., l satisfy that \({{\rm{tr}}(R_{v}^{k})}\), v a unit vector in TM, is invariant under the geodesic flow for all k = 1, . . ., l. Further, if M is k-D’Atri for all k = 1, . . ., n − 1, then the eigenvalues of Jacobi operators are constant functions along geodesics. In the case of spaces of Iwasawa type, we show that k-D’Atri spaces for all k = 1, . . ., n − 1 are exactly the symmetric spaces of noncompact type. Moreover, in the class of Damek-Ricci spaces, the symmetric spaces of rank one are characterized as those that are 3-D’Atri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse A.: Manifolds All of Whose Geodesics Are Closed. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  2. Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics 1598. Springer, New York (1995)

  3. Bourbaki N.: Algebra II (Chapters 4–7). Springer, Berlin (1990)

    MATH  Google Scholar 

  4. Carpenter P., Gray A., Willmore T.: The curvature of Einstein symmetric spaces. Quart. J. Math. 33(2), 45–64 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen B., Vanhecke L.: Differential geometry of geodesic spheres. J. Angew. Math. 325, 28–67 (1981)

    MATH  MathSciNet  Google Scholar 

  6. D’Atri J., Nickerson H.: On divergence-preserving geodesic symmetries. J. Differ. Geom. 3(4), 467–476 (1969)

    MATH  MathSciNet  Google Scholar 

  7. Druetta M.J.: Carnot spaces and the k-stein condition. Adv. Geom. 6, 439–465 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Druetta M.J.: D’Atri spaces of Iwasawa type. Differ. Geom. Appl. 27(5), 653–660 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heber J.: Homogeneous spaces of nonpositive curvature and their geodesic flow. Int. J. Math. 6, 279–296 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heber J.: Noncompact homogeneous Einstein spaces. Inventiones Math. 133, 279–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heber J.: On harmonic and asymptotically harmonic homogeneous spaces. Geom. Funct. Anal. 16, 869–890 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kowalski O., Prufer F., Vanhecke L.: Topics in Geometry in memory of J. D’Atri. Progress in Nonlinear Differential Equations, vol. 20. Birkhäuser, Boston (1996)

    Google Scholar 

  13. Nicolodi L., Vanhecke L.: The geometry of k-harmonic manifolds. Adv. Geom. 6, 53–70 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Druetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druetta, M.J. Geometry of D’Atri spaces of type k . Ann Glob Anal Geom 38, 201–219 (2010). https://doi.org/10.1007/s10455-010-9209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9209-1

Keywords

Mathematics Subject Classification (2000)

Navigation