Abstract
We show that Lagrangian submanifolds in six-dimensional nearly Kähler (non-Kähler) manifolds and in twistor spaces Z 4n+2 over quaternionic Kähler manifolds Q 4n are minimal. Moreover, we prove that any Lagrangian submanifold L in a nearly Kähler manifold M splits into a product of two Lagrangian submanifolds for which one factor is Lagrangian in the strict nearly Kähler part of M and the other factor is Lagrangian in the Kähler part of M. Using this splitting theorem, we then describe Lagrangian submanifolds in nearly Kähler manifolds of dimensions six, eight, and ten.
This is a preview of subscription content, access via your institution.
References
Florin B., Andrei M.: Nearly Kähler 6-manifolds with reduced holonomy. Ann. Global Anal. Geom. 19(4), 307–319 (2001)
Bryant R.L.: Second order families of special Lagrangian 3-folds, perspectives in Riemannian geometry. CRM Proc. Lect. Notes 40, 63–98 (2006)
Butruille J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27(3), 201–225 (2005)
Butruille, J.-B.: Homogeneous nearly Kähler manifolds.to appear in Handbook of pseudo-Riemannian geometry and supersymmetry (2006)
Cleyton R., Swann A.: Einstein metrics via intrinsic or parallel torsion. Math. Z. 247(3), 513–528 (2004)
Cortés V., Schäfer L.: Flat nearly Kähler manifolds. Ann. Glob. Anal. Geom 32(4), 379–389 (2007)
Ejiri N.: Totally real submanifolds in a 6-sphere. Proc. Am. Math. Soc. 83(4), 759–763 (1981)
Friedrich T., Ivanov S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)
Gray A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)
Gray A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972)
Gray A.: The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976)
Gray A., Wolf J.A.: Homogeneous spaces defined by Lie group automorphisms I,II. J. Differ. Geom. 2, 77–159 (1968)
Gutowski J., Ivanov S., Papadopoulos G.: Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class. Asian J. Math. 7(1), 39–79 (2003)
Hou Z.H.: On totally real submanifolds in a nearly Kähler manifold. Port. Math. N.S. 58(2), 219–231 (2001)
Kath, I.: Killing spinors on pseudo-Riemannian manifolds Habilitationsschrift Humboldt-Universität zu Berlin (1999)
Kotô S.: Some theorems on almost Kählerian spaces. J. Math. Soc. Jpn. 12, 422–433 (1960)
Kirichenko V.F.: K-spaces of maximal rank (Russian). Mat. Zametki 22, 465–476 (1977)
Moroianu A., Nagy P.-A., Semmelmann U.: Deformations of nearly Kähler structures Pacific. J. Math. 235(1), 57–72 (2008)
Nagy P.-A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)
Nagy P.-A.: On nearly-Kähler geometry. Ann. Glob. Anal. Geom. 22(2), 167–178 (2002)
Schäfer, L.: On the structure of nearly pseudo-Kähler manifolds (to appear)
Schäfer, L.: Schulte-Hengesbach Fabian. Nearly pseudo-Kähler and nearly para-Kähler six-manifolds (to appear)
Tojo K.: Totally real totally geodesic submanifolds of compact 3-symmetric spaces. Tohoku Math. J. 53, 131–143 (2001)
Vrancken L.: Special Lagrangian submanifolds of the nearly Kaehler 6-sphere. Glasg. Math. J. 45(3), 415–426 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
This article was written in the framework of the Graduiertenkolleg 1463 “Analysis, Geometry and String Theory”.
Rights and permissions
About this article
Cite this article
Schäfer, L., Smoczyk, K. Decomposition and minimality of lagrangian submanifolds in nearly Kähler manifolds. Ann Glob Anal Geom 37, 221–240 (2010). https://doi.org/10.1007/s10455-009-9181-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10455-009-9181-9
Keywords
- Lagrangian
- Nearly Kähler
- Minimal
- Twistor spaces
- Decomposition
Mathematics Subject Classification (2000)
- 53C42
- 53C15
- 32Q60