Skip to main content

Decomposition and minimality of lagrangian submanifolds in nearly Kähler manifolds

Abstract

We show that Lagrangian submanifolds in six-dimensional nearly Kähler (non-Kähler) manifolds and in twistor spaces Z 4n+2 over quaternionic Kähler manifolds Q 4n are minimal. Moreover, we prove that any Lagrangian submanifold L in a nearly Kähler manifold M splits into a product of two Lagrangian submanifolds for which one factor is Lagrangian in the strict nearly Kähler part of M and the other factor is Lagrangian in the Kähler part of M. Using this splitting theorem, we then describe Lagrangian submanifolds in nearly Kähler manifolds of dimensions six, eight, and ten.

This is a preview of subscription content, access via your institution.

References

  1. Florin B., Andrei M.: Nearly Kähler 6-manifolds with reduced holonomy. Ann. Global Anal. Geom. 19(4), 307–319 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryant R.L.: Second order families of special Lagrangian 3-folds, perspectives in Riemannian geometry. CRM Proc. Lect. Notes 40, 63–98 (2006)

    Google Scholar 

  3. Butruille J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27(3), 201–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Butruille, J.-B.: Homogeneous nearly Kähler manifolds.to appear in Handbook of pseudo-Riemannian geometry and supersymmetry (2006)

  5. Cleyton R., Swann A.: Einstein metrics via intrinsic or parallel torsion. Math. Z. 247(3), 513–528 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cortés V., Schäfer L.: Flat nearly Kähler manifolds. Ann. Glob. Anal. Geom 32(4), 379–389 (2007)

    Article  MATH  Google Scholar 

  7. Ejiri N.: Totally real submanifolds in a 6-sphere. Proc. Am. Math. Soc. 83(4), 759–763 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedrich T., Ivanov S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Gray A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)

    MATH  Google Scholar 

  10. Gray A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972)

    MATH  Google Scholar 

  11. Gray A.: The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gray A., Wolf J.A.: Homogeneous spaces defined by Lie group automorphisms I,II. J. Differ. Geom. 2, 77–159 (1968)

    MATH  MathSciNet  Google Scholar 

  13. Gutowski J., Ivanov S., Papadopoulos G.: Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class. Asian J. Math. 7(1), 39–79 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Hou Z.H.: On totally real submanifolds in a nearly Kähler manifold. Port. Math. N.S. 58(2), 219–231 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Kath, I.: Killing spinors on pseudo-Riemannian manifolds Habilitationsschrift Humboldt-Universität zu Berlin (1999)

  16. Kotô S.: Some theorems on almost Kählerian spaces. J. Math. Soc. Jpn. 12, 422–433 (1960)

    Article  MATH  Google Scholar 

  17. Kirichenko V.F.: K-spaces of maximal rank (Russian). Mat. Zametki 22, 465–476 (1977)

    MATH  MathSciNet  Google Scholar 

  18. Moroianu A., Nagy P.-A., Semmelmann U.: Deformations of nearly Kähler structures Pacific. J. Math. 235(1), 57–72 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Nagy P.-A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Nagy P.-A.: On nearly-Kähler geometry. Ann. Glob. Anal. Geom. 22(2), 167–178 (2002)

    Article  MATH  Google Scholar 

  21. Schäfer, L.: On the structure of nearly pseudo-Kähler manifolds (to appear)

  22. Schäfer, L.: Schulte-Hengesbach Fabian. Nearly pseudo-Kähler and nearly para-Kähler six-manifolds (to appear)

  23. Tojo K.: Totally real totally geodesic submanifolds of compact 3-symmetric spaces. Tohoku Math. J. 53, 131–143 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vrancken L.: Special Lagrangian submanifolds of the nearly Kaehler 6-sphere. Glasg. Math. J. 45(3), 415–426 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schäfer.

Additional information

This article was written in the framework of the Graduiertenkolleg 1463 “Analysis, Geometry and String Theory”.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schäfer, L., Smoczyk, K. Decomposition and minimality of lagrangian submanifolds in nearly Kähler manifolds. Ann Glob Anal Geom 37, 221–240 (2010). https://doi.org/10.1007/s10455-009-9181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-009-9181-9

Keywords

  • Lagrangian
  • Nearly Kähler
  • Minimal
  • Twistor spaces
  • Decomposition

Mathematics Subject Classification (2000)

  • 53C42
  • 53C15
  • 32Q60