Skip to main content
Log in

Connections and Higgs fields on a principal bundle

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let M be a compact connected Kähler manifold and G a connected linear algebraic group defined over \({\mathbb{C}}\) . A Higgs field on a holomorphic principal G-bundle ε G over M is a holomorphic section θ of \(\text{ad}(\epsilon_{G})\otimes {\Omega}^{1}_{M}\) such that θθ = 0. Let L(G) be the Levi quotient of G and (ε G (L(G)), θ l ) the Higgs L(G)-bundle associated with (ε G , θ). The Higgs bundle (ε G , θ) will be called semistable (respectively, stable) if (ε G (L(G)), θ l ) is semistable (respectively, stable). A semistable Higgs G-bundle (ε G , θ) will be called pseudostable if the adjoint vector bundle ad(ε G (L(G))) admits a filtration by subbundles, compatible with θ, such that the associated graded object is a polystable Higgs vector bundle. We construct an equivalence of categories between the category of flat G-bundles over M and the category of pseudostable Higgs G-bundles over M with vanishing characteristic classes of degree one and degree two. This equivalence is actually constructed in the more general equivariant set-up where a finite group acts on the Kähler manifold. As an application, we give various equivalent conditions for a holomorphic G-bundle over a complex torus to admit a flat holomorphic connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anchouche B. and Biswas I. (2001). Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold. Amer. J. Math. 123: 207–228

    Article  MATH  MathSciNet  Google Scholar 

  2. Atiyah M.F. (1957). Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85: 181–207

    Article  MATH  MathSciNet  Google Scholar 

  3. Biswas I. and Subramanian S. (2004). Flat holomorphic connections on principal bundles over a projective manifold. Trans. Amer. Math. Soc. 356: 3995–4018

    Article  MATH  MathSciNet  Google Scholar 

  4. Deligne, P. (notes by J. S. Milne): Hodge cycles on abelian varieties. In: Deligne, P., Milne, J.S., Ogus, A., Shih, K.-Y. (eds.) Hodge Cycles, Motives, and Shimura Varieties, pp. 9–100. Lecture Notes in Mathematics, No. 900, Springer-Verlag, Berlin-New York, 1982

  5. Donaldson S.K. (1985). Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc. 50: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  6. Donaldson S.K. (1987). Infinite determinants, stable bundles and curvature. Duke Math. J. 54: 231–247

    Article  MATH  MathSciNet  Google Scholar 

  7. Gómez T.L. and Presas F. (2001). Affine representations of the fundamental group. Forum Math. 13: 399–411

    Article  MATH  MathSciNet  Google Scholar 

  8. Hitchin N.J. (1987). The self–duality equations on a Riemann surface. Proc. London Math. Soc. 55: 59–126

    Article  MATH  MathSciNet  Google Scholar 

  9. Humphreys J.E. (1987). Linear algebraic groups. Graduate texts in mathematics, vol. 21. Springer-Verlag, New York

    Google Scholar 

  10. Kobayashi, S.: Differential geometry of complex vector bundles. Publications of the Math. Society of Japan 15. Iwanami Shoten Publishers and Princeton University Press (1987)

  11. Narasimhan M.S. and Seshadri C.S. (1965). Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82: 540–567

    Article  MathSciNet  Google Scholar 

  12. Ramanathan A. (1975). Stable principal bundles on a compact Riemann surface. Math. Ann. 213: 129–152

    Article  MATH  MathSciNet  Google Scholar 

  13. Ramanathan A. and Subramanian S. (1988). Einstein–Hermitian connections on principal bundles and stability. J. Reine Angew. Math. 390: 21–31

    MATH  MathSciNet  Google Scholar 

  14. Simpson C.T. (1988). Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1: 867–918

    Article  MATH  MathSciNet  Google Scholar 

  15. Simpson C.T. (1992). Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75: 5–95

    Article  MATH  MathSciNet  Google Scholar 

  16. Simpson C.T. (1994). Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79: 47–129

    Article  MATH  MathSciNet  Google Scholar 

  17. Uhlenbeck K. and Yau S.-T. (1986). On the existence of Hermitian–Yang–Mills connections on stable vector bundles. Commun. Pure Appl. Math. 39: 257–293

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Biswas.

Additional information

Results of this paper were announced in the conference on “Algebraic Groups and Homogeneous Spaces” held at T.I.F.R. in 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, I., Gómez, T.L. Connections and Higgs fields on a principal bundle. Ann Glob Anal Geom 33, 19–46 (2008). https://doi.org/10.1007/s10455-007-9072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9072-x

Keywords

Mathematics Subject Classification (2000)

Navigation