Skip to main content
Log in

Homotopy Types of Stabilizers and Orbits of Morse Functions on Surfaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let M be a smooth compact surface, orientable or not, with boundary or without it, P either the real line 1 or the circle S 1, and D(M) the group of diffeomorphisms of M acting on C^∞(M, P) by the rule hf = fh −1 for hD(M) and fC^∞ (M,P). Let f: MP be an arbitrary Morse mapping, Σ f the set of critical points of f, D(M f ) the subgroup of D(M) preserving Σ f , and S(f), S (f f ), O(f), and O(f f ) the stabilizers and the orbits of f with respect to D(M) and D(M f ). In fact S(f) = S(f f ).

In this paper we calculate the homotopy types of S(f), O(f) and O(f f ). It is proved that except for few cases the connected components of S(f) and O(f f ) are contractible, π k O(f) = π k M for k ≥ 3, π2 O(f) = 0, and π1 O(f) is an extension of π1 D(M) ⊕ Z k (for some k ≥ 0) with a (finite) subgroup of the group of automorphisms of the Kronrod-Reeb graph of f.

We also generalize the methods of F. Sergeraert to give conditions for a finite codimension orbit of a tame smooth action of a tame Lie group on a tame Fréchet manifold to be a tame Fréchet manifold itself. In particular, we obtain that O(f) and O(f, Σ f ) are tame Fréchet manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolsinov, A. V. and Fomenko, A. T.: Introduction to the Topology of Integrable Hamiltonian systems. Nauka, Moskov, 1997 (in Russian).

  2. Epstein, D. B. A.: Curves on 2-manifolds and isotopies, Acta Math. 115(1) (1966), 83–107.

    Article  MathSciNet  MATH  Google Scholar 

  3. Earle, C. J. and Eells, J.: The diffeomorphism group of a compact Riemann surface, Amer. Math. Soc., 73(4) (1967), 557–559.

    Article  MathSciNet  Google Scholar 

  4. Earle, C. J. and Schatz, A.: Teichmüller theory for surfaces with boundary, J. Differential Geom.. 4 (1970), 169–185.

    MathSciNet  MATH  Google Scholar 

  5. Fadell, E. and Neuwirth, L.: Configuration spaces, Math. Scand. 10 (1962), 111–118.

    MathSciNet  MATH  Google Scholar 

  6. Gramain, A.: Le type d'homotopie du groupe des difféomorphismes d'une surface compacte.Ann. Sci. Ecole Norm. Sup., 4 (1973), 53–66.

    Google Scholar 

  7. Hamilton, R. S.: The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hatcher, A. and Thurston, W.: A representation of the mapping class group of a closed orientable surface, Topology 19 (1980), 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hendriks, M. H.: La stratification naturelle de l'espace des fonctions différentiables réelles n'est pas la bonne. Comptes Rendus Hebdomadaires Acad., Sci. Ser. A B.. 274(8) (1972), 618–620.

    MathSciNet  MATH  Google Scholar 

  10. Ikegami, K. and Saeki, O.: Cobordism group of Morse functions on surfaces, J. Math. Soc. Japan 55 (2003), 1081–1094.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kudryavtseva, E. A.: Realization of smooth functions on surfaces as height functions, Mat. Sb,., 190 (1999), 29–88 (in Russian).

    Google Scholar 

  12. Kulinich, E. V.: On topologically equivalent Morse functions on surfaces, Methods of Funct. Anal. Topology 4(1) (1998), 59–64.

    MathSciNet  MATH  Google Scholar 

  13. Lickorish, W. B. R.: Homeomorphisms of non-orientable two-manifolds. Proc. Cambridge Philos. Soc. 59 (1963), 307–317.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kriegl, A. and Michor, P.: The Convenient Setting of Global Analysis, Math. Survey Managr. 53Amer. Math. Soc., Providence, (1977).

  15. Kronrod, A.: On functions of two variables, Uspekhi Mat. Nauk.., 5(1). 1 (1950), 24–134 (in Russian).

  16. Maksymenko, S.: Connected components of the space of Morse mapping spaces of surfaces. In: Some problems of contemporary mathematics, Pr. Inst. Mat. Nats. Akad. Nauk. Ukr. Zastos., 25 (1998), 135–153 (in Russian).

  17. Maksymenko, S.: Smooth shifts along flows, Topology Appl. 130 (2003), 183–204.

    Article  MathSciNet  MATH  Google Scholar 

  18. Maksymenko, S.: Path-components of Morse mappings of surfaces, Comm. Math. Helv. 80 (2005), no. 3, 655–690.

  19. Palais, R. S.: Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  20. PoéNARU, V.: Un théorèms des fonctions implicites pour les espaces d'applications C , Publ. Math. Inst. Hautes Étud. Sci. 38 (1970), 93–124.

    Article  MATH  Google Scholar 

  21. Prishlyak, A. O.: Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology Appl. 119 (2002), 257–268.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sergeraert, F.: Un théoréme de fonction implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École. Norm. Sup. (4)5 (1972), 599–660.

    MathSciNet  MATH  Google Scholar 

  23. Sharko, V. V.: Functions on surfaces, I. In: Some problems of contemporary mathematics, Pr. Inst. Mat. Nats. Akad. Nauk. Ukr. Zastos. 25 (1998) 408–434 (in Russian).

  24. Sharko, V. V.: Smooth topological equivalence of functions of surfaces, Ukrainian Math. J. 5 (2003), 687–700 (in Russian).

  25. Smale, S.: Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Maksymenko.

Additional information

Communicated by Peter Michor Vienna

Mathematics Subject Classifications (2000): 37C05, 57S05, 57R45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksymenko, S. Homotopy Types of Stabilizers and Orbits of Morse Functions on Surfaces. Ann Glob Anal Geom 29, 241–285 (2006). https://doi.org/10.1007/s10455-005-9012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-005-9012-6

Keywords

Navigation